Semester 1 st		Contact Hrs			Marks			Credits
Subject	Subject Name	L	L T P Int. Ext. Total		Total			
Code								
BAEE3-101	Aerodynamics	3	1	0	40	60	100	4
BAEE3-102	Aerodynamics Lab.	0	0	4	60	40	100	2
BAEE3-103	Human Factors		1	0	40	60	100	6
BAEE3-104	04 English Communication		1	0	40	60	100	4
BAEE3-105	Mathematics	5	1	0	40	60	100	6
BAEE3-106	AEE3-106 Corrosion and NDI Techniques		1	0	40	60	100	4
BAEE3-107 Corrosion and NDI Techniques Lab.		0	0	4	60	40	100	2
	Total	19	5	8	320	380	700	28

Semester 2 nd		Contact Hrs			Marks			Credits
Subject	Subject Name		Т	Р	Int.	Ext.	Total	
Code								
BAEE3-208	Electrical Fundamentals-I	3	1	0	40	60	100	4
BAEE3-209	Electrical Fundamentals-I Lab.	0	0	4	60	40	100	2
BAEE3-210	Aviation Legislation	5	1	0	40	60	100	6
BAEE3-211	Environmental Science	3	1	0	40	60	100	4
BAEE3-212	Physics	3	1	0	40	60	100	4
BAEE3-213	Physics Lab.	0	0	4	60	40	100	2
BAEE3-214 Quality Management System		5	1	0	40	60	100	6
	Total	19	5	8	320	380	700	28

MRSPTU

	Semester 3 rd	Contact Hrs			Marks			Credits
Subject Code	Subject Name	L	Т	Р	Int. Ext. Total			
BAEE3-315	Aircraft Structure And Associated Systems	3	1	0	40	60	100	4
BAEE3-316	Aircraft Structure And Associated Systems Lab.		0	4	60	40	100	2
BAEE3-317	Electrical Fundamentals-II	3	1	0	40	60	100	4
BAEE3-318	Electrical Fundamentals-II Lab.	0	0	4	60	40	100	2
BAEE3-319	Gas Turbine Engine	3	1	0	40	60	100	4
BAEE3-320	Gas Turbine Engine Lab.	0	0	4	60	40	100	2
BAEE3-321	Aircraft Systems-1	3	1	0	40	60	100	4
BAEE3-322	Aircraft Systems-1 Lab.	0	0	4	60 40 100		2	
Total			4	16	400	400	800	24

	Semester 4 th			Contact Hrs			Marks		
Subject	Subject Name	L	Т	Р	Int.	Ext.	Total		
Code									
BAEE3-423	Electronic Fundamentals and Digital Techniques-I	3	1	0	40	60	100	4	
BAEE3-424	Electronic Fundamentals and Digital Techniques-I Lab.	0	0	4	60	40	100	2	
BAEE3-425	Aircraft Materials and Hardware	3	1	0	40	60	100	4	
BAEE3-426	Aircraft Materials and Hardware Lab.		0	4	60	40	100	2	
BAEE3-427	Aircraft Maintenance Practices	3	-1	0	40	60	100	-4	
BAEE3-428	Aircraft Maintenance Practices Lab.	0	0	4	60	40	100	2	
BAEE3-429	Avionics	3	1	0	40	60	100	4	
BAEE3-430	Avionics Lab.	0	0	4	60	40	100	2	
	Total		4	16	40 0	400	800	24	

	Semester 5 th	Contact Hrs			Marks			Credits
Subject Code	Subject Name L T P Int. Ext. T		Total					
BAEE3-531	Electronic Fundamentals and Digital Techniques-II		1	0	40	60	100	4
BAEE3-532	Electronic Fundamentals and Digital Techniques-II Lab.	0	0	4	60	40	100	2
BAEE3-533	Workshop Practices	3	1	0	40	60	100	4
BAEE3-534	Workshop Practices Lab.	0	0	4	60	40	100	2
BAEE3-535	Aircraft Systems-II	3	1	0	40	60	100	4
BAEE3-536	Aircraft Systems-II Lab.	0	0	4	60	40	100	2
BAEE3-537	Piston Engines and Propellers	3	1	0	40	60	100	4
BAEE3-538	AEE3-538 Piston Engines and Propellers Lab.		0	4	60	40	100	2
	Total	12	4	16	400	400	800	24

	Semester 6 th	Con	tact I	Irs		Credits		
Subject Code	Subject Name	L	Т	Р	Int.	Ext.	Total	
BAEE3-639	Ground Handling, Safety And Support System		1	0	40	60	100	4
BAEE3-640	Ground Handling, Safety And Support System LAB		0	4	60	40	100	2
BAEE3-641	Approval of Maintenance Organization	3	1	0	40	60	100	4
BAEE3-642	Approval of Maintenance Organization LAB	0	0	4	60	40	100	2
BAEE3-643	Typical Aircraft Maintenance - Fixed Wing Heavy / Complex Aircraft	3	1	0	40	60	100	4
BAEE3-644	Typical Aircraft Maintenance - Fixed Wing Heavy / Complex Aircraft LAB	0	0	4	60	40	100	2
BAEE3-645	Typical Aircraft Maintenance - Fixed Wing Light / Composite Aircraft	3	1	0	40	60	100	4
BAEE3-646	Typical Aircraft Maintenance - Fixed Wing Light / Composite Aircraft LAB	0	0	4	60	40	100	2
	Total	12	4	16	400	400	800	24

Total Credits: 28 + 28 + 24 + 24 + 24 + 24 = 152

	AERODYNAMICS	
Subject Code: BAEE3-101	LTPC	Duration: 60 Hrs.
-	3104	

Rationale:

As the AME students will involve in supervising the Maintenance, Repair and Overhauling of aircraft, they must possess adequate knowledge on atmosphere, fundamental principles of aerodynamics, instrument system and theory of flight.

Learning Outcomes:

After undergoing the subject, the students will be able to: 1. Understand the different layers of atmosphere

- 2. Basic principles of aerodynamics
 3. Aircraft controls and stability
- 4. Functions of control surfaces and tabs
- 5. Lift, drag, thrust and weight
- 6. Aircraft instrument system
- 7. High speed theory
- 8. Principles of rotary wing aircraft9. Basic terms and terminology of aerodynamics

Contents	Hrs.
Physics of the Atmosphere	2
International Standard Atmosphere (ISA), application to aerodynamics	
Aerodynamics	12
> Airflow Around a Body: Boundary layer, laminar and turbulent flow, free stream	
flow, relative airflow, up wash and downwash, vortices, stagnation;	
The Terms: camber, chord, mean aerodynamic chord, aerodynamic centre, centre	
of pressure, stagnation point, profile (parasite) drag, induced drag, angle of attack,	
wash in and wash out, fineness ratio, wing shape and aspect ratio; Thrust, Weight,	
Aerodynamic Resultant;	
Seneration of Lift and Drag: Angle of Attack, Lift coefficient, Drag coefficient,	
polar curve, stall; Aerofoil contamination including ice, snow, frost.	
Theory of Flight	10
Relationship between Lift, Weight, Thrust and Drag; Glide ratio; Steady state	
flights, performance; Theory of the turn;	
Influence of Load Factor: Stall, flight envelope and structural limitations;	
➤ Lift augmentation.	
Flight Stability and Dynamics	3
Longitudinal stability (active and passive)	
➤ Lateral (active and passive)	
Directional stability (active and passive).	
Theory of Flight	16
Aeroplane Aerodynamics and Flight Controls	
Operation and effect of:	
Roll controlailerons and spoilers; Pitch control elevators, stabilators, variable	
incidence stabilisers and canards; Yaw controlrudder limiters;	
 Control using elevons, ruddervators; 	
High Lift Devices: slots, slats, flaps, flaperons;	
Drag Inducing Devices: spoilers, lift dumpers, speed brakes;	
> Effects of wing fences, saw tooth leading edges;	

Boundary layer control using, vortex generators, stall wedges or leading edge devices:	
 Operation and effect of trim take belonce and anti-belonce (leading) take serve take 	
• Operation and effect of trim tabs, barance and anti-barance (leading) tabs, servo tabs,	
spring tabs, mass balance, control surface bias, aerodynamic balance panels.	
Basic Instrument Systems	5
Classification; Atmosphere; Terminology; Pressure measuring devices and	
systems;	
> Pitot static systems; Altimeters; Vertical speed indicators; Airspeed indicators;	
> Machmeter: Altitude reporting/alerting systems: Air data computers: rate of climb	
/vertical speed indicator, cabin pressure indicator, pneumatic systems instruments:	
 Gyroscopic: artificial horizon attitude director direction indicator horizontal 	
situation indicator, turn and slip indicator, turn coordinator:	
Compasses direct reading remote reading	
Compasses: direct reading, remote reading;	
Angle of attack indication, stall warning systems;	
Glass Cockpit, Other aircraft system indication.	
High Speed Flight	8
> Speed of sound, subsonic flight, transonic flight, supersonic flight, Mach number,	
critical Mach number, compressibility effect, buffet, shock wave, aerodynamic	
heating, area rule:	
 Factors affecting airflow in engine intakes of high speed aircraft. 	
 Fiffects of sweenback on critical Mach number 	
Effects of sweepback of efficient Mach Humber.	4
Kotary wing Aerodynamics	4
Elementary rotary wing and aerodynamic Terminology;	
Basic operation and effect of cyclic, collective and anti-torque controls.	

Instructional Strategy:

- 1. Teachers should lay special emphasis in making the students conversant with the basics principles of aerodynamics and terms and terminologies of theory of flight.
- 2. Use of audio-visual aids/video films should be made to demonstrate the Bernoulli's principle, four forces, operation of controls, stability and high speed theory.
- 3. Exposure to control surfaces and cockpit so that students can learn how control surfaces are operated from cockpit.
- 4. Observing the flying of aircraft: operation of control surfaces and high lift/drag devices during landing and take-off.
- 5. Demonstration of the functions of aircraft parts and control surfaces
- 6. Practical demonstration of flying controls through a **drone** would be a greater advantage.

- 1. Clancey, 'Aerodynamics'.
- 2. A.C. Kermode, 'Mechanics of Flight'.
- 3. 'Force Measurement on Symmetric Airfoil'.
- 4. 'Force Measurement on Cambered Airfoil'.
- 5. E.H.J. Pallett, 'Aircraft Instruments'.
- 6. C.A. Williams, 'Aircraft Instruments'.

AERODYNAMICS LAB. LTPC

Subject Code: BAEE3-102

Duration 60 Hrs

ν	ur	au	UII :	UU	HIS

S.N.	Contents	Hrs.			
01	Flow around various objects in a 'Water Channel' - Square, Cylinder, Aerofoil,	4			
	boundary layer				
02	Fabricate Aerofoil Model - Understanding associated terms	4			
03	Water Channel - Effect of vortex generator on boundary layer control	4			
04	Effect of angle of attack and airflow velocity on lift and Stalling	4			
05	Study of flow over streamlined bodies with different angle of attack by flow visualization technique				
06	Identification of flight control surfaces and their effect on flight control - Aircraft Model				
07	Identifying High lift devices and practical understanding of their effect on lift with respect to aircraft speed (Air flow)				
08	Practical understanding of lift spoiling devices	4			
09	Removal / installation of Pitot Static Instruments	4			
10	Calibration of a Pitot Static System using a Pitot Static Leak tester	4			
11	Fabrication of model - high speed flight	4			
12	Practical study of various factors affecting lift and drag on an aerofoil	4			
13	Factors affecting flow of fluid over an aerofoil surface and demonstrate the Venturi effect	4			
14	Identify various type of flap surfaces and their effect on high lift and high drag characteristic	4			
1 5	Identification of various parts of Rotary wing	4			

HUMAN FACTORS

Subject Code: BAEE3-103

LTPC 5106

Duration: 90 Hrs.

Rationale:

The term "human factors" in the context of aviation maintenance engineering is relatively new. It refers to the study of human capabilities and limitations in the workplace. Human factors researchers study the interaction of maintenance personnel, the equipment they use, the written and verbal procedures and rules they follow, and the environmental conditions of any system. The aim of human factors is to optimise the relationship between maintenance personnel and systems with a view to improving safety, efficiency and well-being". For this purpose, AME students in this course are required to teach the concepts of human factor to develop knowledge for keeping the person and object safe with maximum output during the maintenance work.

Learning Outcomes:

After undergoing this course, the students will be able to know:

- 1. Human performance and limitations, social psychology, physical environment and factors affecting performance of a person.
- 2. Task, communication and human error during the work.
- 3. Hazards in the workplace, human error in the maintenance environment.
- 4. Human factors in the aircraft maintenance and inspection.
- 5. Human errors in the aircraft maintenance and inspection.

6. Error prevention and considerations strategies.

Contents	Hrs.
General	5
\succ The need to take human factors into account;	
> Incidents attributable to human factors/ human error;	
➤ 'Murphy's' law.	
Human Performance and Limitations	5
➤ Vision;	
➤ Hearing;	
> Information processing;	
> Attention and perception;	
≻ Memory;	
Claustrophobia and physical access.	
Social Psychology	5
> Responsibility: individual and group;	
> Motivation and de-motivation;	
> Peer pressure;	
> 'Culture' issues;	
> Team working;	
> Management, supervision and leadership.	
Factors Affecting Performance	5
> Fitness/health;	
> Stress: domestic and work related;	
> Time pressure and deadlines;	
> Workload: overload and under-load;	
> Sleep and fatigue, shift work:	
> Alcohol, medication, drug abuse.	
Physical Environment	5
➤ Noise and fumes;	
> Illumination;	
► Climate and temperature;	
> Motion and vibration;	
> Working environment.	
Tasks	5
> Physical work;	
► Repetitive tasks;	
> Visual inspection;	
Complex systems.	
Communication	5
→ Within and between teams;	
> Work logging and recording;	
> Keeping up to date, currency;	
Dissemination of information.	
Human Error	5
\succ Error models and theories;	
> Types of error in maintenance tasks;	
> Implications of errors (i.e. accidents);	
> Avoiding and managing errors.	

Hazards in the Workplace	5
 Recognizing and avoiding hazards: 	
 Dealing with emergencies 	
Dealing with energencies. Human Eastars in Aircraft Maintanance and Inspection	5
Human Factors in Aircraft Maintenance and Inspection	5
Fluman Factors — Alternational Maintenance and Inspection; Contemporary	
Maintenance Problems; the SHEL Model; the Reason Model; Human Error.	_
Human Error in Aircraft Maintenance and Inspection	5
> (an organizational perspective)	
Human Error in the Maintenance Environment	5
Human Factors Issues Affecting Aircraft Maintenance and Dirty Dozen;	
Information Exchange and Communication;	
➤ Training; Aircraft Maintenance	
Technician Facilities and Work Environment.	
Teams and Organizational Issues in Aircraft Maintenance	5
➤ Team Work;	
➢ Job Design;	
➢ Reward Systems;	
➤ Selection and Staffing;	
➤ Training.	
Automation and Advanced Technology System	5
> Automation and Computerization;	
Advanced Job Aid Tools.	
Error Prevention, Considerations and Strategies	5

Instructional Strategy:

While imparting instructions, teacher should give demonstration of various models concerned to human factors to the students. Different transparencies and animated projections should be shown to the students for better understanding of the lesson.

- 1. CAP 715 An Introduction to Aircraft Maintenance Engineering Human Factors for JAR 66, <u>Civil Aviation Authority, UK</u>.
- 2. CAP 718 Human Factors in Aircraft Maintenance and Inspection, Civil Aviation Authority, UK.
- 3. FAA-H-8083-30 Aircraft Maintenance Technician Handbook <u>General, US.</u> Department of Transportation, Federal Aviation Administration
- 4. ICAO Doc 9806

TUTORIAL		
Contents	Hrs.	
Application of Human Factors in development of Aircraft Maintenance	1	
Programme and Inspection Schedule.		
> Application of Human Factors in Aircraft Maintenance Planning and Execution.	1	
> Application of Human Factors in Aircraft Maintenance.	1	
Detail study of Murphy's' law.	1	
➤ To study Shel Model.	2	
Study of Dirty Dozen.	1	
Stress Management in Aircraft Maintenance environment.	2	
> To study human behavior in performing aircraft inspection in adverse weather	2	
conditions.		

Develop procedure and environment for aircraft inspection for error prevention,	2
considerations and strategies.	1
Study of social impact on aircraft maintenance engineer.	2

ENGLISH COMMUNICATION		
Subject Code: BAEE3-104	LTPC	Duration: 60 Hrs.
-	3104	

Rationale:

Although the art of communication is natural to all living beings, people with effective communication skills succeed in their professions and business in today's world of complexities. After studying this course, the students are expected to gain the fundamental knowledge of communication and learn the tools and techniques to develop the interpersonal communication skills so that they will become excellent in dyadic and corporate communication.

Learning Outcomes:

After studying this subject, the students will have the adequate knowledge on:

- 1. The importance of communication
- 2. The process of communication
- 3. The keys or characteristics of effective communication
- 4. The barriers of communication
- 5. The techniques of breaking the communication barriers

After studying this subject, the students will be able to perform the following activities with the enhanced level of confidence:

- 1. Writing
- 2. Listening
- 3. Reading
- 4. Speaking
- 5. Interview
- 6. Non-verbal communication

Contents	Hrs.
Introduction	5
Theory of Communication	
Types and modes of Communication	
Language of Communication	15
➤ Verbal and Non-verbal (Spoken and Written),	
Personal, Social and Business Barriers and Strategies,	
Intra-personal, Inter personal and Group communication	
Speaking Skills	20
➢ Monologue	
➢ Dialogue	ĺ
Group Discussion	
Effective Communication/ Miscommunication	
➤ Interview	
Public Speech	
Reading and Understanding	15
Close Reading	
➤ Comprehension	
> Summary	

- ➤ Paraphrasing
- ➤ Analysis and Interpretation
- > Translation (from Indian language to English and vice-versa)
- Literary/Knowledge Texts

Writing Skills

- > Documenting
- ➢ Report Writing
- ➤ Making notes
- ➤ Letter writing

Instructional Strategy:

1. Teachers should lay special emphasis in making the students conversant with concepts, process and practices related to effective communication skills.

15

2. It is recommended to use audio-visual aids/video films to impart the knowledge on the English language and communication skills.

Recommended Books:

- 1. 'Fluency in English', Part-II, Oxford University Press, 2006.
- 2. V.R. Narayanaswami, 'Strengthen Your Writing', 3rd Edn., Orient Longman, 2005.
- 3. Andrea J. Rutherford, 'Basic Communication Skills for Technology', 1st Edn., <u>Pearson</u> <u>Business English, Pearson</u>, **2008**.
- 4. 'Language, Literature and Creativity', <u>Orient Blackswan</u>, **2013**, <u>Education Asia</u> (Singapore) Pvt. Ltd., Bangalore, **2001**..
- 5. 'Language through Literature', (forthcoming Edn.). Gauri Mishra, Ranjana Kaul, Brati Biswas, Nell Ann Pickett, Ann A. Laster, Katherine E. Staples,
- 6. 'Technical English (Writing, Reading and Speaking)', 8th Edn., <u>Pearson Education, USA,</u> <u>Addison Wesley Longman Inc.</u>, 2001.

	MATHEMATICS-I	
Subject Code: BAEE3-105	LTPC	Duration: 90 Hrs.
	5106	

Rationale:

Contents of this course provide fundamental base for understanding engineering problems and their solution algorithms. Contents of this course will enable students to use basic tools like logarithm, binomial theorem, partial fractions, matrices, t-ratios and co-ordinates for solving complex engineering problems with exact solutions in a way which involve less computational task. By understanding the logarithm, they will be able to make long calculations in short time and it is also a pre-requisite for understanding Calculus.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Apply complex number in engineering problems.
- 2. Apply permutation and combination to count without actual counting.
- 3. Apply permutation and combination to understand binomial theorem.
- 4. Calculate the approximate value of roots of certain expressions in engineering problems by application of binomial theorem.
- 5. Resolve rational functions to partial fractions for the use in Integral Calculus.
- 6. Use matrices to provide solution to engineering problems.
- 7. Solve different problems using trigonometry.
- 8. Understand the geometric shapes used in engineering problems by Co-ordinate Geometry.
- 9. Explore the idea of location, graph, and linear relationships between two variables.

	TT	
Contents	Hrs.	
PART-1	10	
Linear Algebra		
Elementary Row Transformation, Reduction of a Matrix to Row Echelon Form, Rank of		
a Matrix, Consistency of Linear Simultaneous Equations, Gauss Elimination Method,		
Gauss-Jordan Method, Eigen Values and Eigen Vectors of a Matrix, Caley-Hamilton		
Theorem, Diagonalization of a Matrix,		
PART-2	5	
Trigonometry Functions		
Elementary trigonometry, sine, cosine and tan functions, reciprocals of trig		
functions, angle values of trig functions, geometrical problems, trigonometric		
inverse functions		
PART-3	20	
Multivariable Differential Calculus		
Functions of 2 Variables, Limits and continuity, Partial differentiation, Euler's		
Theorem, Maxima and Minima of two variables, Method of Lagrange		
Multipliers, Taylor Series and Maclaurin Series of two variables, Jacobian.		
PART-4	20	
Multivariable Integral Calculus		
Multiple Integrals-Double integrals, Change of order, Applications to areas,		
volumes, Triple Integral.		
PART-5	20	
Vector Calculus		
Gradient, Divergence, Curi, Evaluation of Line Integral, Green's Theorem in		
Plane (without proof), Stoke's Theorem (without proof), Gauss Divergence		
Theorem (without proof).		
	F	

Instructional Strategy:

- 1. Basic elements of algebra, trigonometry and co-ordinate geometry can be taught in the light of their applications in the field of engineering and technology.
- 2. By laying more emphasis on applied part, teacher can also help in providing a good continuing education base to the students.
- 3. Students need to be taught the skills needed to use software tools built by experts through multiple problem solving based on the topics related to Algebra, Trigonometry and Coordinate Geometry that the industry requires.
- 4. Examples to be used should be related to engineering.
- 5. Students should be able to relate to the actual use of these examples and the way mathematical calculations will help them in doing their job.

- 1. Shanti Narain, 'Differential Calculus'.
- 2. Shanti Narain, 'Integral Calculus'.
- 3. 'Linear Algebra', Schaum Outline Series.
- 4. B.S. Grewal, 'Engineering Mathematics'.

CORROS	SION AND NDI TECHN	IQUES
Subject Code: BAEE3-106	LTPC	Duration: 60 Hrs.
-	3104	

Rationale:

Lot of development has taken place in the field NDT to investigate different types of corrosion. New equipment and technologies are being developed continuously since its inception. AME students in this

Course are required to have knowledge of various types NDT equipment and its applications. For this purpose, it is necessary to teach them basics of the NDT and corrosion in aircraft. This subject aims at developing knowledge about the basics of NDT used in the Aircraft industries.

Learning Outcomes:

After undergoing this subject, the students will be able to:

- 1. Understand principle of different NDT techniques.
- 2. Classify different types of corrosion.
- 3. Know effects, properties and identification and removal of corrosion.

DADT 1 6
IANI-I 0
Type of Corrosion, Corrosion Theory; General Development: Development of
Corrosion, Factors influencing corrosion. Forms of Corrosion, Corrosion and
Mechanical Factors, Common Corrosive
Agents. Metallic Mercury Corrosion on Aluminum Alloys, Micro Organisms.
PART-2 10
Importance of NDT in quality assurance; Different types of non-destructive
techniques to obtain information regarding size, location and orientation of
Damage or cracks. Visual inspection techniques coin tapping technique for
Composite structures and adhesive bonds.
Ultrasonic testing (UT Level 1, 2), Radiography Inspection (RT Level 1, 2),
Magnetic particle testing (MT Level 1, 2), Microwave testing, Pulse echo
technique, pitch-catch technique, through transmission technique, A-scan, B-Scan,
C-scan. Acoustic emission: Sources of acoustic emission in composites,
peak amplitude, rise time during events, ring-down counts duration of events.
X-ray radiography: Absorption spectra, short wave length, X-ray for detection of
voids. Die penetration technique.
PART-3 10
Liquid/Dye penetrant test (PT level 1, 2), Visual testing (VT-level 1, 2), Eddy
current testing (ET level 1, 2), Guided wave testing.
PART-4 8
TKY joints ultrasonic inspection, Basics of NDT, Metallurgy for non-metallurgists.
PART-5 6
Effects of Corrosion on Metals, Corrosion Prone Areas and Preventative
Maintenance
Battery Compartments and battery vent openings, Lavatories, Buffets and Galleys, Bilge
Areas, Wheel wells and landing gear, External skin areas, Water
entrapment areas, Engine Frontal Areas and cooling air vents, Electronic
package compartments.

PART-6	8
Factors in corrosion control, preventative maintenance, frequency of inspection,	
recommended depth of inspection, non-destructive inspection (NDI),	
Corrosion removal techniques, Standard methods, Preparations for rework,	
Paint removal, special techniques, fairing or blending reworked areas, chemical	
testing, chemical spot analysis of magnetic metals, surface treatment testing,	
chemical spot testing of non-magnetic metals, post identification cleaning and	
refinishing, mechanical corrosion removal by blasting.	
PART-7	8
Corrosion Damage and Rework Limits on Aluminum and Aluminum Alloys,	
Treatment, Processing of Aluminum Surfaces, Repair, Corrosion Removal	
Corrosion damage and rework limits on Magnesium and Alloy treatment,	
Processing of Aluminum surfaces, repair, corrosion removal.	
Corrosion damage and rework limits on Ferrous Corrosion Damage and Rework.	
PART-8	4
Limits on Ferrous & Alloy Treatment, Processing of Aluminum Surfaces, Repair,	
Corrosion Removal; Corrosion damages on composite material	
Mercury spills/corrosion damage. Corrosion protection for agricultural aircraft.	

Instructional Strategy:

While imparting instructions, teacher should give demonstration of various types NDT equipment to the students. Transparencies and animated videos should be shown to the students for better understanding of the lesson.

- **Recommended Books:**
- 1. AC-43-4A
- 2. AC-43-1B
- 3. Prasad J. and C.G. Krishnadas Nair, 'Non-Destructive Test and Evaluation of Materials'.
- 4. Non-Destructive Testing Handbook, Vol. 1. Aerospace NDT <u>The American Society for</u> <u>Non-destructive Testing</u>.

CORROSION AND NDI TECHNIQUES LAB.			
Subject Code: BAEE3-107	LTPC	Duration: 60 Hrs.	
-	0042		

S.N.	Contents	Hrs.
01	Identify different types of corrosion, factors contribute to corrosion, areas	5
	prone for corrosion, corrosive agents avoidance of corrosion	
02	Detection of corrosion, defects and recording	8
03	Various Corrosion preventive technique - practice	10
04	Surface cleaning, rework and protection technique of ferrous and non-ferrous	10
	(Magnesium and Aluminum alloys) metallic surface	
05	Accidental spillage of corrosive agents, cleaning and restoration	10
06	Ultrasonic Thickness testing	2
07	Liquid Penetrant testing	2
08	Eddy current	2
09	Magnetic Particle	2
10	Visual Inspection	2
11	Radiography testing	2
12	Guided wave testing	3

ELECTRICAL FUNDAMENTALS-I			
Subject Code: BAEE3-208	L T P C	Duration: 60 Hrs.	
-	3104		

Rationale:

Electricity & Magnetism is devoted to the utilization of the forces of nature and materials for the benefits of mankind. Harnessing the vast sources of energy and transforming them to the most convenient form (electrical) for the overall benefit of the society for sustenance is prime objective. For this purpose, it is necessary to teach the students basics of electrical science, fundamental laws of electricity and different electrical components. This subjects aims at developing knowledge of electricity and its application used in domestic and aviation industries.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Understand about fundamentals of electron theory.
- 2. Distinguish between conductor, semi-conductor & insulator.
- 3. Characteristics of static electricity & properties of electrostatic charges.
- 4. Understand about different electrical terminology.
- 5. Understand various laws of electricity Coulomb's law; Kirchhoff's law; Ohm's Law.
- 6. Distinguish between resistor, capacitor and inductor.
- 7. Distinguish between alternating current and direct current.
- 8. Characteristics & properties of magnetism and interrelation with electricity.
- 9. Understand properties & application of Transformers and Filters.

Contents	Hrs.	
Electron Theory	03	
\succ Structure and distribution of electrical charges within: atoms, molecules, ions		
compounds		
Molecular structure of conductors, semiconductors and insulators.		
Static Electricity and Conduction	03	
Static electricity and distribution of electrostatic charges: Electrostatic laws of	ŰŰ	
attraction and repulsion: Units of charge, Coulomb's Law: Conduction of electricity		
in solids, liquids, gases and a vacuum.		
Electrical Terminology	02	
\succ The following terms, their units and factors affecting them: potential difference.	°-	
electromotive force, voltage, current, resistance, conductance, charge, conventional		
current flow, electron flow.		
DC Circuits	04	
> Ohms Law, Kirchhoff's Voltage and Current Laws; Calculations using the above		
laws to find resistance, voltage and current; Significance of the internal resistance of		
a supply.		
Resistance/Resistor	05	
> Resistance and affecting factors; Specific resistance; Resistor colour code, values		
and tolerances, preferred values, wattage ratings; Resistors in series and parallel;		
Calculation of total resistance using series, parallel and series parallel		
combinations; Operation and use of potentiometers and rheostats; Operation of		
Wheatstone Bridge.		
> Positive and negative temperature coefficient conductance; Fixed resistors,		
stability, tolerance and limitations, methods of construction; Variable resistors,		
thermistors, voltage dependent resistors; Construction of potentiometers and		

rheostats; Construction of Wheatstone Bridge.	
Capacitance/Capacitor	04
> Operation and function of a capacitor; Factors affecting capacitance area of plates,	
distance between plates, number of plates, dielectric and dielectric constant, working	
voltage, voltage rating; Capacitor types, construction and function; Capacitor colour	
coding;	
Calculations of capacitance and voltage in series and parallel circuits; Exponential	
charge and discharge of a capacitor, time constants; Testing of capacitors.	
Magnetism	05
Theory of magnetism; Properties of a magnet Action of a magnet suspended in the	
Earth's magnetic field; Magnetization and demagnetization; Magnetic shielding;	
Various types of magnetic material; Electromagnets construction and principles of	
operation; Hand clasp rules to determine: magnetic field around current carrying	
conductor.	
Magneto motive force, field strength, magnetic flux density, permeability, hysteresis	
loop, retentivity, coercive force reluctance, saturation point, eddy currents;	
Precautions for care and storage of magnets.	
Inductance/Inductor	06
Faraday's Law; Action of inducing a voltage in a conductor moving in a magnetic	
field.	
Induction principles; Effects of the following on the magnitude of an induced	
voltage: magnetic field strength, rate of change of flux, number of conductor turns;	
Mutual induction; The effect the rate of change of primary current and mutual	
inductance has on induced voltage; Factors affecting mutual inductance: number of	
turns in coil, physical size of coil, permeability of coil, position of coils with respect	
to each other; Lenz's Law and polarity determining rules; Back emf, self-induction;	
Saturation point; Principle uses of inductors.	00
AC Theory	08
Sinusoidal waveform: phase, period, frequency, cycle; instantaneous, average, root	
mean square, peak, peak to peak current values and calculations of these values- in	
relation to voltage, current and power Triangular/Square waves; Single/3 phase	
principles.	00
Resistive (R), Capacitive (C) and Inductive (L) Circuits	08
Phase relationship of voltage and current in L, C and R circuits, parallel, series and	
series parallel; Power dissipation in L, C and R circuits; Impedance, phase angle,	
power factor and current calculations; True power, apparent power and reactive	
power calculations.	0.6
Transformers	06
Firansformer construction principles and operation; Transformer losses and methods	
for overcoming them; Transformer action under load and no-load conditions;	
Power transfer, efficiency, polarity markings; Calculation of line and phase voltages	
and currents; Calculation of power in a three phase system; Primary and Secondary	
current, voltage, turns ratio, power, efficiency; Auto transformers.	01
ritters	VÓ
reperation, application and uses of the following filters: low pass, high pass, band	
pass, band stop.	

Instructional Strategy:

While imparting instructions, teacher must show various images or videos related to Topic by using projector. Students should be asked to collect different electrical

Components available in the market. Visits to industry should be planned to demonstrate Electrical power generation, distribution & utilization in the industry.

Recommended Books:

- 1. B.L. Theraja, 'Electrical Technology'.
- 2. E.H.J. Pallett, 'Aircraft Electrical System'.

ELEC	FRICAL FUNDAMENTALS-I LAB.	
Subject Code: BAEE3-209		Duration: 60 Hrs.
	0042	

S.N.	Contents	Hrs.	
01	Simple experiments with static electricity and the coulomb's law		
02	Application of Electromotive forces and Potential difference; Ballistic		
	Galvanometer - Measurement of charge & current sensitivity		
03	Measuring (a) Resistances (b) AC and DC Voltages (c) DC Current & checking	4	
	electrical fuses and connection		
04	Use of a range of test meters to measure volts, amps and resistance.	4	
05	Resistor colour codes - Calculation of resistance value using colour codes	4	
06	Potentiometer, rheostat & wheat stone bridges and determine unknown	4	
	resistance		
07	Use a Multimeter for measuring Resistance, checking electrical fuses, identify	4	
	various types of resistance		
08	Identify various types of capacitors	4	
09	Measurement of magnetic field strength, Magnetic field density & permeability	4	
	using flux meter.		
10	Production of electricity by inductance methods	4	
11	Single phase and three phase power supply distribution using star and delta	4	
	connection		
12	Construct series LCR circuit and determine its (a) Resonant Frequency (b)	4	
	Quality Factor		
13	Construct parallel LCR circuit and determine its (a) Anti-resonant frequency		
	(b) Quality factor Q		
14	Use of transformer in power distribution and measurements.	4	
15	Make filters circuit to study function of low pass, high pass, band pass & band	4	
	stop		

	AVIATION LEGISLATION	
Subject Code: BAEE3-210	L T P C	Duration: 90 Hrs.
	5106	

Rationale:

The Civil Aviation Safety Authority is responsible for establishing and administrating the regulatory framework in relation to aircraft safety. This subject will enable the students to learn about civil aviation rules and requirements. A healthy, well-managed Civil Aviation sector, supported by good aviation policy-making and regulation, is vital to the economy of every state. Civil Aviation Authorities (CAAs) are responsible for the oversight and regulation of civil aviation with a focus on aviation safety, security, airspace policy, economic regulation, efficiency, sustainability, consumer protection and respect for the environment.

Learning Outcomes:

- 1. To get the knowledge of ICAO, FAR, EASA procedures through CAR
- 2. Acquire knowledge of documentation and procedures of certificate of airworthiness and registration.
- 3. Procedures of maintenance programme and inspections.
- 4. Understanding of the legislation and regulations that must be adhered to when manufacturing and maintaining aircraft.

Contents	Hrs.
Regulatory Framework	6
Role of International Civil Aviation Organization; Introduction to Chicago Convention,	l
1944; Introduction to ICAO, Convention, Standards and Recommended Practices; The	1
Aircraft Act, 1934; The Aircraft Rules, 1937 - Part I, II, III, IV, VI, VII, IX, XIIA, XIIB,	1
XIIC, XIII, XIV.	l
Role of the DGCA; Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR	l
147; Aeronautical Information Circulars (Applicable to Aircraft Maintenance and	l
Release); CAR - Sections 1 and 2.	l
CAR-M	15
Detail understanding of CAR M provisions related to Continuing Airworthiness; Detailed	l
understanding of CAR-M.	L
CAR-145 — Approved Maintenance Organisations	15
Detailed understanding of CAR-145 and CAR M Subpart F.	
CAR-66 Certifying Staff – Maintenance	5
Detailed understanding of CAR-66.	l
CAR-147 Approved Maintenance Training Organization	5
Detailed understanding of CAR-147.	
Aircraft Operations	5
Commercial Air Transport/Commercial Operations; Air Operators Certificates; Operators	l
Responsibilities, in particular regarding continuing airworthiness and maintenance;	l
Documents to be carried on board; Aircraft Placarding (Markings);	
Aircraft Certification	10
a) General: Certification rules: such as FAA & EACS 23/25/27/29; Type Certification	1
Supplemental Type Certification; Type Approval; CAR-21 Sub-Part F, G, H, I, M, P &	l
Q. Aircraft Modifications and repairs approval and certification; permit to fly	1
requirements.	l
b) Documents: Certificate of Airworthiness; Certificate of Registration; Noise Certificate;	l
Weight Schedule; Radio Station License and Approval.	
Applicable National and International Requirements	5
Introduction to ICAO, FAR, EASA Regulations - Aircraft Maintenance and	1
certification	l
a) Maintenance Programme, Maintenance checks and inspections; Master Minimum	l
Equipment Lists, Minimum Equipment List; Dispatch Deviation Lists;	1
Airworthiness Directives; Service Bulletins, manufacturers service information;	l
Modifications and repairs; Maintenance documentation: maintenance manuals,	I
structural repair manual, illustrated parts catalogue, etc.;	l
D) Continuing airworthiness; Test flights; ETOPS /EDTO, maintenance and dispatch	I
requirements; KVSM, maintenance and dispatch requirements; KNP, MNPS	l
Operations All Weather Operational Category 2/2 superfigure and minimum in t	l
All weather Operations; Category 2/3 operations and minimum equipment,	

maintenance, training and certification requirements.	
Safety Management System	10
State Safety Programme; Basic Safety Concepts; Hazards & Safety Risks; SMS	
Operation; SMS Safety performance; Safety Assurance.	
Fuel Tank Safety	4
Special Federal Aviation Regulations (SFARs) from 14 CFR SFAR 88 of the FAA and of	
JAA TGL 47; Concept of CDCCL, Airworthiness Limitations Items (ALI).	

Instructional Strategy:

While imparting instructions, teacher should show various types of certificates and necessary documentation to the students. Students should be asked to fill all the forms and maintain log books.

Recommended Books:

- 1. The Aircraft Act, 1934
- 2. The Aircraft Rules, 1937, VOL 1
- 3. The Aircraft Rules, 1937, VOL 3
- 4. Aeronautical Information Circular
- 5. CAR Section 1, 2, & 8 SMS,
- 6. CAR 21, M, 145, 66 & 147
- 7. Special Federal Aviation Regulations (SFARs) 14 CFR, SFAR 88 &
 - JAA TGL 47 Airworthiness Procedure Manual

Rationale:

Environmental science is important to save our world from destruction. Because of man's abusive actions, the environment is not safe anymore. There are more calamities experienced such as flashfloods, hurricanes and draughts and climate change. If we do not study the environment, then there is a great danger that everything that we know as home with all that surround us, will lead to extinction, yes including the extinction of our specie.

We need to study the environment and the sciences applied into it to find solutions to different environmental issues so that children of tomorrow will still enjoy the healthy and productive environment we still have now. If man will only make use of the different discoveries through environmental science, then this world will definitely be a better place to be called home not only for us but for the next generation.

Learning Outcomes:

The Environmental Studies major prepares students for careers as leaders in understanding and addressing complex environmental issues from a problem-oriented, interdisciplinary perspective. Students:

- 1. Master core concepts and methods from ecological and physical sciences and their application in environmental problem solving.
- 2. Master core concepts and methods from economic, political, and social analysis as they pertain to the design and evaluation of environmental policies and institutions.
- 3. Appreciate the ethical, cross-cultural, and historical context of environmental issues and the links between human and natural systems.
- 4. Understand the transnational character of environmental problems and ways of addressing them, including interactions across local to global scales.

- 5. Apply systems concepts and methodologies to analyse and understand interactions between social and environmental processes.
- 6. Reflect critically about their roles and identities as citizens, consumers and environmental actors in a complex, interconnected world.
- 7. Demonstrate proficiency in quantitative methods, qualitative analysis, critical thinking, and written and oral communication needed to conduct high-level work as interdisciplinary scholars and/or practitioners.

~		
Contents	Hrs.	
PART-1	2	
Multidisciplinary nature of environmental studies		
Scope and importance; Concept of sustainability and sustainable development		
PART-2	6	
What is an ecosystem? Structure and function of ecosystem; Energy flow in an		
ecosystem: food chains, food webs and ecological succession. Case studies of the		
following ecosystems:		
➢ Forest ecosystem		
➢ Grassland ecosystem		
> Desert ecosystem		
> Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).		
PART-3	8	
Natural Resources: Renewable and Non-renewable Resources		
> Land Resources and Land Use Change: Land degradation, soil erosion and		
desertification		
> Deforestation: Causes and impacts due to mining dam building on environment		
forests biodiversity and tribal populations		
> Water: Use and overexploitation of surface and ground water floods droughts		
conflicts over water (international & inter-state)		
Example Finances: Renewable and non-renewable energy sources use of alternate		
energy sources, growing energy needs case studies		
DADT A	Q	
IANI-4 Diadiversity and Concentration	0	
Levels of biological diversity genetic species and ecosystem diversity		
Pieces of biological diversity, genetic, species and ecosystem diversity, bet		
Biogeographic zones of mula; Biodiversity patients and global biodiversity not		
Spois.		
Thursda as a mega-blochversity hallon; Endangered and endernic species of India		
Finreats to biodiversity: Habitat loss, poacning of wildlife, manwildlife conflicts,		
biological invasions; Conservation of biodiversity: Insitu and Ex-situ conservation		
of biodiversity.		
Ecosystem and biodiversity services: Ecological, economic, social, ethical, aesthetic		
and Informational value.		
PART-5	8	
Environmental Pollution		
Environmental pollution: types, causes, effects and controls; Air, water, soil and noise		
pollution.		
Nuclear hazards and human health risks		
Solid waste management: Control measures of urban and industrial waste.		
➢ Pollution case studies.		

PART-6	7
Environmental Policies & Practices	
> Climate change, global warming, ozone layer depletion, acid rain and impacts on	
human communities and agriculture	
> Environment Laws: Environment Protection Act; Air (Prevention & Control of	
Pollution) Act; Water (Prevention and control of Pollution) Act; Wildlife Protection	
Act; Forest Conservation Act. International agreements: Montreal and Kyoto	
protocols and Convention on Biological Diversity (CBD).	
▶ Nature reserves, tribal populations and rights, and human wildlife conflicts in Indian	
context	
PART-7	6
Human Communities and the Environment	
\succ Human population growth: Impacts on environment, human health and welfare.	
Resettlement and rehabilitation of project affected persons; case studies.	
Disaster management: floods, earthquake, cyclones and landslides.	
Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan.	
Environmental ethics: Role of Indian and other religions and cultures in environmental	
conservation.	
Environmental communication and public awareness, case studies (e.g., CNG vehicles	
in Delhi).	
PART-8	15
Field Work	
Visit to an area to document environmental assets: river/ forest/ flora/fauna, etc.	
Visit to a local polluted siteUrban/Rural/Industrial/Agricultural.	
Study of common plants, insects, birds and basic principles of identification.	
Study of simple ecosystemspond, river etc.	
Instructional Strategy:	

The learning outcomes provide the planning framework for teachers.

- In their planning, teachers in Lower Primary schools use the learning outcomes from the syllabuses, and the elaborations in this Teacher Guide, to identify specific knowledge, skills and attitudes that can be developed at each grade.
- Continuous assessment of student learning against the outcomes will ensure a supportive classroom environment that will meet the students' individual learning needs.
- Here is a discovery-learning motto to keep in mind when planning activities for students who are learning in two languages.

- 1. M. Gadgil & R. Guha, 'This Fissured Land: An Ecological History of India', <u>Univ. of</u> <u>California Press</u>, **1993**.
- 2. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd Edn., <u>Pearson Education Pvt., Ltd.</u>, ISBN 81-297-0277-0, **2004**.
- 3. T.G. Miller JR., 'Environmental Science', Wadsworth Publishing Co.
- 4. E.P. Odum, H.T. Odum & J. Andrews, 'Fundamentals of Ecology', <u>Philadelphia:</u> <u>Saunders, Andrews</u>, **1991**.
- 5. R. Sengupta, 'Ecology and Economics: An Approach to Sustainable Development', OUP, 2003.
- 6. J.S. Singh, S.P. Singh and S.R. Gupta, 'Ecology, Environmental Science and Conservation', <u>S. Chand Publishing, New Delhi</u>, **2014**.
- N.S. Sodhi, L. Gibson & P.H. Raven (eds), 'Conservation Biology: Voices from the Tropics', <u>John Wiley & Sons</u>, 2013.

- 8. V. Thapar, 'Land of the Tiger: A Natural History of the Indian Subcontinent', 1998.
- 9. M.N. Rao & A.K. Datta. 'Waste Water Treatment', <u>Oxford and IBH Publishing Co. Pvt.</u> Ltd., **1987**.

	PHYSICS	
Subject Code: BAEE3-212	LTPC	Duration: 60 Hrs.
-	3104	

Rationale:

Applied physics includes the study of a large number of diverse topics all related to things that go on in the world around us. It aims to give an understanding of this world both by observation and by prediction of the way in which objects will behave. Concrete use of physical principles and analysis in various fields of engineering and technology are given prominence in the course content.

Note: Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles. In all contents, SI units should be followed. Working in different sets of units can be taught through relevant software.

Learning Outcomes:

After undergoing this subject, the students will be able to:

- 1. Identify physical quantities, parameters and select their units for use in engineering solutions.
- 2. Compute units and dimensions of different physical quantities.
- 3. Represent physical quantities as scalar and vectors. Solve difficult problems (walking of man, motion of lawn roller.)
- 4. Analyze and design banking of roads and apply conservation of momentum principle to explain recoil of gun etc.
- 5. Define work, energy and power and their units. Derive work, power and energy relationship and solve problems about work and power State the principle of conservation of energy.
- 6. Identify forms of energy, conversion from one form to another. Compare and contrast the physical properties associated with linear motion and rotational motion and give examples of conservation of angular momentum.
- 7. Describe the surface tension phenomenon and its units, cause of surface tension and effects of temperature on surface tension.
- 8. Describe the viscosity of liquids. Define stress and strain. State Hooke's law and conditions under which it is valid.
- 9. Measure temperature in various processes on different scales (Celsius, Kelvin Fahrenheit etc.)
- 10. Distinguish between conduction, convection and radiation.
- 11. Use equipment like Vernier caliper, screw gauge, spherometer.

Contents	Hrs.
PART-1	4
Vector algebra. Scalar and vector products. Derivatives of a vector with respect	
to a parameter.	
PART-2	14
Elasticity: Hooke's law - Stress-strain diagram - Elastic Moduli-Relation between elastic	
constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants -	
Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder	

- Determination of Rigidity modulus by static torsion - Torsional pendulum- Determination	
of Rigidity modulus and moment of inertia - q , η and s by Searle's method.	
PART-3	12
Momentum and Energy: Conservation of momentum. Work and energy.	
Conservation of Energy. Motion of rockets.	
Rotational Motion: Angular velocity and angular momentum. Torque.	
Conservation of angular momentum.	
Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a System	
of particles. Centre of Mass.	
PART-4	10
Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field	
(motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's	
Laws (statement only). Satellite in circular orbit and applications.	
Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).	
PART-5	10
Oscillations: Simple harmonica motion. Differential equation of SHM and its solutions.	
Kinetic and Potential Energy, Total Energy and their time averages. Damped Oscillations.	
PART-6	10
Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory	
of Relativity. Length contraction. Time dilation. Relativistic addition of Velocities.	

Instructional Strategy:

- 1. Teacher may use various teaching aids like models, charts, graphs and experimental kits etc. for imparting effective instructions in the subject.
- 2. Students need to be exposed to use of different sets of units and conversion from one unit type to another. Software may be used to solve problems involving conversion of units.
- 3. The teacher should explain about field applications before teaching the basics of mechanics, work, power and energy, rotational motion, properties of matter etc. to develop proper understanding of the physical phenomenon.
- 4. Use of demonstration can make the subject interesting and develop scientific temper in the students.

- 1. F.W. Sears, M.W. Zemansky and H.D. Young, 'University Physics', 13th Edn., <u>Addison</u> <u>Wesley</u>, **1986**.
- Charles Kittel, et. Al., 'Mechanics Berkeley Physics Course', Vol.-1, <u>Tata McGraw Hill</u>, 2007.

	PHYSICS LAB.	
Subject Code: BAEE3-213	LTPC	Duration: 60 Hrs.
	0042	

S.N.	Contents	Hrs.
01	Measurements of length (or diameter) using Vernier caliper, screw gauge and	6
02	Travelling microscope.	6
03	To determine the Height of a Building using a Sextant.	6
04	To determine the Moment of Inertia of a Flywheel.	6
05	To determine the Young's Modulus of a Wire by Optical Lever Method.	6

06	To determine the Modulus of Rigidity of a Wire by Maxwell's needle.	6
07	To determine the Elastic Constants of a Wire by Searle's method.	6
08	To determine g by Bar Pendulum.	6
09	To determine g by Kater's Pendulum.	6
10	To determine g and velocity for a freely falling body using Digital Timing technique	6

QUALITY MANAGEMENT SYSTEM			
Subject Code: BAEE3-214	L T P C	Duration: 90 Hrs.	
	5106		

Rationale:

A quality management system (QMS) is a formalized system that documents processes, procedures, and responsibilities for achieving quality policies and objectives. A QMS helps coordinate and direct an organization's activities to meet customer and regulatory requirements and improve its effectiveness and efficiency on a continuous basis. Quality management systems serve many purposes, including:

- 1. Improving processes
- 2. Reducing waste
- 3. Lowering costs
- 4. Facilitating and identifying training opportunities
- 5. Engaging staff
- 6. Setting organization-wide direction

The aim of quality management system is to improve understanding of what customers really want in the way of services the organisation produces and to ensure that it consistently delivers exactly what is expected. For this purpose, AME students in this course are required to teach the quality management system to develop knowledge to maintain consistently the standard of maintenance work carried out with economy.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Meaning of Quality and quality improvement.
- 2. Need of quality control in aviation industry.
- 3. Quality audit, Total quality management, Concept of Zero defect.
- 4. ISO-9001 quality systems, IAQG, AS-9100 Aerospace standards.
- 5. DGCA, FAA, EASA and IATA Requirements and Standards Aerospace Quality manuals, aircraft airworthiness, documentation, Safety practices & standards. Quality policy.
- 6. Auditing techniques, recording findings, communication, assessing compliance action and monitoring compliance.

Contents	Hrs.
Module-I	16
Introduction	
Descriptors/Topics Meaning of Quality and quality improvement, need of automobile &	
Aviation Quality,	
Introduction to Statistical methods for quality control, Process Capability for aerospace	
applications.	

Module-II	14
Quality Control	
Statistical Quality Control, Ishikawa diagram, control charts, Control charts for	
attributes & variables.	
Moving average chart for aviation Quality systems.	
Module-III	12
Production Control	
Acceptance Sampling, OC curve, Sampling Plan, Producer's risk, Consumer's risk,	
Average Quality Level, AOQL, Design of Single & double sampling plan.	
Module-IV	12
Quality Assurance	
Need of Aerospace Quality Assurance, Quality Audit, total quality management,	
Concept of Zero defects, ISO-9001 quality systems, IAQG,	
AS-9100 Aerospace Standards.	
Module-V	7
Aerospace Certification	
DGCA, FAA, EASA and IATA Requirements and Standards Aerospace Quality	
manuals, aircraft airworthiness, documentation,	
Safety practices & standards.	
Quality Policy, Objective, Quality Requirements, Quality procedures and evidence	
retention.	
Module-VI	2
Regulatory Compliance	
Quality Standards / Regulatory Compliance – Compliance Records.	
Module-VII	12
Auditing techniques recording findings, communication, assessing compliance action	
and monitoring compliance. Statistical analysis and risk assessment	/
Risk based surveillance	
Risk based surveillance.	

Instructional Strategy:

While imparting instructions, teacher should give demonstration of various figures and diagrams concerned to quality management system to the students. Different transparencies and animated projections should be shown to the students for better understanding of the lesson.

- 1. E.L. Grant & R.S. Leavenworth, 'Statistical Quality Control', McGraw Hill Co.
- 2. M. Mahajan, 'Statistical Quality Control', Dhanpat Rai & Co.
- 3. Kanishka Bedi, 'Quality Management', Oxford University Press.
- 4. ISO 9001
- 5. AS 9100
- 6. DGCA Civil Aviation Requirements
- 7. IATA IOSA Standards Manual

TUTORIAL	
Contents	Hrs.
Develop Typical Quality System for five specific activities of aircraft	5
maintenance industry.	
Carryout audit of five specific activities of aircraft maintenance industry	5
establish regulatory compliance and record recommendation.	

Carryout audit of five specific activities of aircraft maintenance industry	5
record findings, document evidence, communicate findings, verify action	
taken and root cause assessment and carryout risk assessment.	

AIRCRAFT STRUCTURE AND ASSOCIATED SYSTEMS			
Subject Code: BAEE3-315	L T P C	Duration: 60 Hrs.	
-	3104		

Rationale:

As the AME students will involve in maintenance, repair and overhauling of aircraft in future, they must be well versed in identifying the parts of aircraft and understanding their functions. Hence, learning the basic term of aviation, the concepts of aircraft structure and control surfaces are mandatory.

Learning Outcomes:

After undergoing the subject, students will be able to have the adequate knowledge on the following:

- 1. General terms and terminologies of aviation
- 2. Major and minor parts of aircraft and their functioning
- 3. Types of aircraft structure
- 4. Classification of aircraft structure
- 5. Fasteners and rivets being used in aircraft
- 6. Loads acting on aircraft during flight
- 7. Rigging and symmetry checks
- 8. Mass balancing and aerodynamic balancing
- 9. Attachment of wings
- 10. Aircraft surface protection

Contents	Hrs.
Introduction to General term and vocabulary used in Aeronautical Science	4
Introduction to aircraft technical literature.	
Introduction to ATA system	
Introduction to aircraft, major aircraft components, aircraft systems and their	4
functions, reference lines, station and zone identification systems	
Airframe Structures — General Concepts	20
 Airworthiness requirements for structural strength; Structural classification, primary, secondary and tertiary; Fail safe, safe life, damage, tolerance concepts; Zonal and station identification systems; Stress, strain, bending, compression, shear, torsion, tension, hoop stress, fatigue; Lightning strike protection provision. Drains and ventilation provisions, System installation provisions Aircraft bonding and continuity. Construction methods of: stressed skin fuselage, formers, stringers, longerons, bulkheads, frames, doublers, struts, ties, beams, floor structures, reinforcement, methods of skinning, anti-corrosive protection, wing, empennage and engine attachments: 	
 Describe current practice in aircraft design related to load transfer, load path continuity and reduction of stress raisers in pressurized fuselages. 	
Fasteners used on Aircraft	4
➤ Fasteners, Screw threads: Screw nomenclature; thread forms, dimensions and	
tolerances for standard threads used in aircraft; measuring screw threads;	
➢ Bolts, studs and screws	

\triangleright Bolt types: specification identification and marking of aircraft bolts international	
standards.	
➤ Nuts: self-locking, anchor, standard types: Machine screws: aircraft specifications:	
Studs: types and uses insertion and removal: Self tapping screws dowels	
➤ Aircraft rivets: Types of solid and blind rivets: specifications and identification, heat	
treatment.	
\triangleright Riveting: Riveted joints, rivet spacing and pitch: Tools used for riveting and	
dimpling: Inspection of riveted joints.	
Structural Assembly	4
\geq Structural assembly techniques; riveting, bolting, bonding.	
> Methods of surface protection, such as chromating, anodising, painting, Surface	
cleaning.	
\succ Airframe symmetry: Methods of alignment and symmetry checks.	
> Complete airframe for symmetry fuselage for twist and bending, vertical stabiliser for	
alignment wings and horizontal stabilisers for dihedral and incidence.	
Airframe Structures — Aeroplane	10
Fuselage (ATA 52/53/56): Construction and pressurisation sealing	
> Wing, stabiliser, pylon and undercarriage attachments	
Seat installation and cargo loading system	
> Doors and emergency exits: construction, mechanisms, operation and safety devices	
Windows and windscreen construction and mechanisms	
Wings (ATA 57)	4
Anhedral, dihedral and incidence angle	
Inter-plane struts	
Longitudinal dihedral	
Rigging position	
> Stagger	
► Wash in and Washout	
> Construction	
> Fuel storage	
> Landing gear	
> Pylon	
Control surface	
➢ High lift/drag attachments.	-
Stabilizers	4
Construction	
Control surface attachment.	
Flight Control Surfaces (ATA 55/57)	4
Construction and attachment	
Balancing mass and aerodynamic.	•
Nacelles/Pylons (ATA 54)	2
Construction Eigenerally	
Firewalls	
r Engine mounts	

Instructional Strategy:

- 1. Teachers should lay special emphasis in making the students conversant with the parts of aircraft and their functions, aviation terms and terminologies, types of aircraft constructions and materials used.
- 2. Use of audio-visual aids/video films should be made to show specialized operations.

- 3. Exposure to aircrafts parts
- 4. Observing the flying of aircraft: operation of control surfaces and high lift/drag devices during landing and take off
- 5. Demonstration of the functions of aircraft parts and control surfaces.

Reference Books:

- 1. Aircraft handbook FAA (AC 65-15 A)
- 2. Aircraft structure Ch. 01 (FAA)
- 3. Aircraft Construction Repair and Inspection-By Joe Christy
- 4. Aviation Maintenance Technician Hand book by FAA
- 5. Aircraft Maintenance and Repair- Delp /Bent/McKinley,
- 6. AC 43.1B

AIRCRAFT STRUCTURE AND ASSOCIATED SYSTEMS LAB.

Subject Code: BAEE3-316	L T P C	Duration: 60 Hrs.
	0043	

0042

S.N.	Contents	Hrs.
01	Identifying aircraft reference lines, station and zone numbers	
02	Identification of major structural members of fixed wing aircraft.	4
	Loads on major structural members.	
03	Identification of detail structural members of aircraft and loads acting on these	4
	structural members.	
04	Aircraft structure construction	4
05	Aircraft structural assembly, joints and lightning protection	4
06	Identification of components of flight control surfaces and methods of mass	4
	balancing	
0 7	Control surface, landing gear and engine attachment	4
08	Identification of type of Fuselage and method of pressure sealing Identification	4
	of Pressure bulkheads and unpressurised bulkheads	
09	Common structural defects, simple inspection technique and recording	
10	Types of rivets, defects, inspection of riveted joints and structure	
11	Construction (Modelling) of various types structural joints	8
12	Check aircraft symmetry	4

ELECTRICAL FUNDAMENTALS-II

Subject Code: BAEE3-317	LTPC	Duration: 60 Hrs.
	3104	

Rationale:

Electricity & Magnetism is devoted to the utilization of the forces of nature and materials for the benefits of mankind. Harnessing the vast sources of energy and transforming them to the most convenient form (electrical) for the overall benefit of the society for sustenance is prime objective. For this purpose, it is necessary to teach the students basics of electrical science, fundamental laws of electricity and different electrical components. This subjects aims at developing knowledge of electricity and its application used in domestic and aviation Industries.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Understand about sources of electrical energy.
- 2. Understand about construction and working of battery.

- 3. Understand about construction and working of DC & AC generators.
- 4. Distinguish between bonding, grounding and shielding.
- 5. Understand about electrical cable and connectors.
- 6. Distinguish between wire stripping, crimping & splicing.
- Understand about electromagnetic interference (EMI).
 Understand about electrostatic sensitive devices.

Contents	Hrs.
Generation of Electricity	04
Elementary knowledge on generation of electricity by the following methods: light,	
heat, friction, pressure, chemical action, magnetism and motion.	
DC Sources of Electricity	04
Construction and basic chemical action of: - primary cells & secondary cells, lead acid	
cells, nickel cadmium cells & other alkaline cells; Cells connected in series and parallel;	
internal resistance and its effect on a battery; construction, materials and operation of	
thermocouples; operation of photo-cells.	
DC Motor/Generator Theory	09
Basic motor and generator theory; Construction and purpose of components in DC	
generator; Operation of DC generator, factors affecting output & direction of current	
flow in DC generators; Operation of DC motor and factors affecting output power,	
torque, speed and direction of rotation of DC motors; series wound, shunt wound and	
compound motors; Starter Generator construction.	
AC Generators	09
Rotation of loop in a magnetic field and waveform produced; operation and	
construction of revolving armature and revolving field type AC generators; single	
phase, two phase and three phase alternators; Three phase star and delta	
connections, advantages & uses; Permanent Magnet Generators.	
AC Motors	08
Construction, principles of operation and characteristics of: - AC synchronous and	
induction motors (both single and polyphase); Methods of speed control and direction of	
rotation; Methods of producing a rotating field: - capacitor, inductor, shaded or split	
pole.	
Power	08
Power, work and energy (kinetic and potential); Dissipation of power by a resistor;	
power formula; Calculations involving power, work and energy	
Aircraft Electrical Cables and Connectors	08
a) Cable types, construction and characteristics: High tension and co-axial cables:	00
Crimping: Connector types, pins, plugs, sockets, insulators, current and voltage	
rating, coupling, identification codes.	
b) Electrical Wiring Interconnection System (EWIS) Continuity, insulation and bonding	
techniques and Testing: Use of crimp tools: hand and hydraulic operated: testing of	
crimp joints: Connector pin removal and insertion: Co-axial cables: testing &	
installation precautions: Identification of wire types, their inspection criteria and	
damage tolerance. Wiring protection techniques: Cable looming and loom support.	
cable clamps, and protective sleeving techniques including heat shrink wrapping.	
shielding. EWIS installations, inspection, repair, maintenance and cleanliness	
standards.	

Electromagnetic Environment	06
influence of the following phenomena on maintenance practices for electronic system:-	
Electromagnetic Compatibility EMC; Electromagnetic Interference EMI; High	
Intensity Radiated Field HIRF; Lightning/lightning protection	
Electro Sensitive Devices	04
Special handling of components sensitive to electrostatic discharges; awareness of risks	
and possible damage, component and personnel anti-static protection devices.	

Instructional Strategy:

While imparting instructions, teacher must show various images or videos related to Topic by using projector. Students should be asked to collect different electrical Components available in the market. Visits to industry should be planned to demonstrate Electrical power generation, distribution & utilization in the industry.

Recommended Books:

- 1. B.L. Theraja, 'Electrical Technology'.
- 2. E.H.J. Pallett, 'Aircraft Electrical System'.
- 3. Thomas K. Eismin, 'Aircraft Electricity and Electronics'.

ELECTRICAL FUNDAMENTALS-II LAB.E3-318L T P C

Subject Code: BAEE3-318

0042

Duration: 60 Hrs.

S.N.	Contents	Hrs.	
01	Generation of electricity by light, heat, chemical action, magnetism & motion.	4	
02	Construct power sources using primary and secondary cells.	4	
03	Construct a model to study usage of thermo-cell and photo-cell.	4	
0 4	Construct a model to generate DC power using different method of coil	4	
	Arrangements (series and shunt) to understand their Usage.		
05	Construct a model of DC motor using different method of coil arrangements	4	
	(series and shunt) to understand their Usage.		
06	Construct a model to generate single/poly phase AC power to understand their	4	
	usage.		
07	Construct a model of AC motor using single/ poly phase arrangements to	4	
	understand their usage.		
08	Measure amount of power dissipated by various resistors; calculation of power	4	
09	Using at least two crimping systems, select appropriate cable crimping tools and		
	crimp cables to prepare cable ends or plug / socket terminals.		
10	Check an aircraft electrical circuit for continuity in conjunction with an electrical	4	
	wiring diagram.		
11	Identify cables and cables values by reference to the maintenance manuals.	4	
	Identify a range of electrical component symbols.		
12	Inspection of electrical cable looms / bundles and cable trunking.	4	
13	Select and use appropriate cable stripping tools and solder cables to single and	4	
	multipin connectors / tag boards.		
14	Prepare, and install a simple loom, using at least two binding methods.	4	
15	Identification of various fasteners and locking devices used in aircraft.		

	GAS TURBINE ENGINE	
Subject Code: BAEE3-319	L T P C	Duration: 60 Hrs.
-	3104	

Rationale:

Lot of development has taken place in the field of gas turbine engine. New engine designs and technology are being developed continuously since its inception. AME students in this course are required to have knowledge of various types of turbine engines and its applications. For this purpose, it is necessary to teach them basics of the construction, systems of gas turbine engines fitted in aircraft. This subject aims at developing knowledge about the basic design and functioning of different turbine engine systems used in the Aircraft industries.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Understand principle of operation, basic design and construction of gas turbine engines.
- 2. Classify different types of turbine engines.
- 3. Know characteristics, properties and identification of engines used in aircraft.
- 4. Understand about fuel, oil and ignition system components of the engine.
- 5. Know about starting system, power augmentation system, fire protection system of the engine.
- 6. Gas turbine engine monitoring, ground operation engine preservation and storage techniques.

Contents	Hrs.
Fundamentals	3
Potential energy, kinetic energy, Newton's laws of motion, Brayton cycle; The relationship	
between force, work, power, energy, velocity, acceleration;	
Constructional arrangement and operation of turbojet, turbofan, turbo shaft, turboprop.	
Engine Performance	3
Gross thrust, net thrust, choked nozzle thrust, thrust distribution, resultant thrust,	
thrust horsepower, equivalent shaft horsepower, specific fuel consumption;	
Engine efficiencies; By-pass ratio and engine pressure ratio; Pressure, temperature	
and velocity of the gas flow; Engine ratings, static thrust, influence of speed,	
altitude and hot climate, flat rating, limitations.	
Inlet	2
Compressor inlet ducts; Effects of various inlet configurations; Ice protection.	
Compressors	4
Axial and centrifugal types; Constructional features and operating principles and	
applications; Fan balancing; Operation: Causes and effects of compressor stall and	
surge; Methods of air flow control: bleed valves, variable inlet guide vanes,	
variable stator vanes, rotating stator blades; Compressor ratio.	
Combustion Section	2
Constructional features and principles of operation.	
Turbine Section	3
Operation and characteristics of different turbine blade types; Blade to disk	
attachment; Nozzle guide vanes; Causes and effects of turbine blade stress and creep.	
Exhaust	2
Constructional features and principles of operation; Convergent, divergent and	
variable area nozzles; Engine noise reduction; Thrust reversers.	
Bearings and Seals	2
Constructional features and principles of operation and handling .	

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Page 30 of 58

	1
Lubricants and Fuels	1
Properties and specifications; Fuel additives; Safety precautions.	
Lubrication Systems	2
System operation/lay-out and components.	
Fuel Systems	3
Operation of engine control and fuel metering systems including electronic engine	
control (FADEC); Systems lay-out and components.	
Air Systems	3
Operation of engine air distribution and anti-ice control systems, including internal	
cooling, sealing and external air services.	
Starting and Ignition Systems	3
Operation of engine start systems and components; Ignition systems and components;	
Maintenance safety requirements.	
Engine Indication Systems	4
Exhaust Gas Temperature/ Inter-stage Turbine Temperature; Engine Thrust	
Indication: Engine Pressure Ratio, engine turbine discharge pressure or jet pipe	
pressure systems;	
Oil pressure and temperature; Fuel pressure and flow; Engine speed, Propeller	
Speed; Vibration measurement and indication; Torque; Power.	
Power Augmentation Systems	2
Operation and applications; Water injection, water methanol; Afterburner systems.	
Turbo-prop Engines	3
Gas coupled/free turbine and gear coupled turbines; Reduction gears; Integrated engine	
and propeller controls; Over-speed safety devices.	
Turbo-shaft Engines	3
Arrangements drive systems, reduction gearing, couplings, control systems.	
Auxiliary Power Units (APUs)	3
Purpose, operation, protective systems.	
Power Plant Installation	3
Configuration of firewalls, cowlings, acoustic panels, engine mounts, anti-vibration	
mounts, hoses, pipes, feeders, connectors, wiring looms, control cables and rods, lifting	
points and drains.	
Fire Protection Systems	2
Operation of detection and extinguishing systems.	
Engine Monitoring and Ground Operation	4
Procedures for starting and ground run-up; Interpretation of engine power output	
and parameters; Trend (including oil analysis, vibration and boroscope) monitoring;	
Inspection of engine and components to criteria, tolerances and data specified by	
engine manufacturer; Compressor washing/cleaning; Foreign Object Damage.	
Engine Storage and Preservation	3
Preservation and de-preservation for the engine and accessories/ systems.	

Instructional Strategy:

While imparting instructions, teacher should give demonstration of various types of gas turbine engines, its systems and components, to the students. Different mock ups, transparencies and animated videos should be shown to the students for better understanding of the lesson.

- 1. Irwine Treager, 'Aircraft Gas Turbine Technology'.
- 2. Rolls Royce, 'The Jet Engine'.
- 3. 'Power Plant Section Text Book', (EA-ITP-P).

- 4. Dale Crane, 'Aviation Maintenance Technician Series'.
- 5. Jack V. Casamassa and Ralph D. Bent,' 'Jet Aircraft Power Systems'.
- 6. Turbomeca, 'Gas Turbine Engines'. Bordes, France.
- 7. M. Guillon, 'Hydraulic Servo Systems'.
- 8. John Anderson, 'Introduction to Flight'.
- 9. 'Civil Aircraft Inspection Procedure (CAP459) Part-II Aircraft'.

10. M.J. Kroes, T.W. Wild, R.D. Bent and J.L. McKinley, 'Aircraft Power Plants'.

GAS TURBINE ENGINE LAB.

Subject Code: BAEE3-320

L T P C 0 0 4 0

Duration: 60 Hrs.

S.N.	Contents	Hrs.
01	Identify engine types, modules and subassemblies and components of turbine	2
	engines.	
02	Identify various parts of thrust management and bypass system of turbine engine.	2
03	Identification and inspection of compressors stages.	2
04	Engine compressor surge and stall management components and control.	2
05	Identification various components of combustion systems and methods of	2
	cooling's.	
06	Identification of exhaust system and methods of noise reduction.	2
07	Identification and inspection of components of thrust reversal system.	2
08	Identify normal & electronic fuel control, monitoring and indication system.	6
09	Familiarization with methods of engine starting and ignition systems.	4
10	Operation check of Engine indicating systems.	4
11	Familiarization of APU starting and shutdown procedure.	4
12	Familiarization with power plant removal & installation.	8
13	Visual Inspection of engines.	4
14	Typical engine control rigging.	6
15	Familiarization with engines and airframe interface.	4
16	Testing of engine fire monitoring and extinguishing operation.	4
17	Study engine storage and preservation.	2

	AIRCRAFT SYSTEMS-I	
Subject Code: BAEE3-321	LTPC	Duration: 60 Hrs.
	3104	

Rationale:

This subject provides the knowledge about handling procedures of aircraft on ground which includes weighing, balancing, taxiing, re-fuelling/defueling procedures and will enable the students to comprehend the theory, concepts and working of pneumatic, Air conditioning and cabin pressurization system. This will help them to troubleshoot the faults in the systems

Learning Outcomes:

Key areas of study include:

- 1. Aircraft handling and effects of environmental conditions on it and its storage.
- 2. Emergency equipment requirements, cabin lay-out and cargo handling and retention equipment
- 3. Airframe systems; including hydraulic, pneumatic, and environmental control systems etc.

Contents	Hrs.
Aircraft Weight and Balance	4
a) Centre of Gravity/Balance limits calculation: use of relevant documents;	
b) Preparation of aircraft for weighing; Aircraft weighing.	
Aircraft Handling and Storage	5
Aircraft taxiing/towing and associated safety precautions; Aircraft jacking, chocking,	
securing and associated safety precautions; Aircraft storage methods; Refuelling /defueling	
procedures; De-icing/anti-icing procedures; Electrical, hydraulic and pneumatic ground	
supplies. Effects of environmental conditions on aircraft handling and operation.	
Pneumatic/Vacuum (ATA 36)	8
System lay-out; Sources: engine/APU, compressors, reservoirs, ground supply; Pressure	
control; Distribution; Indications and warnings; Interfaces with other systems.	
Air Conditioning and Cabin Pressurization (ATA 21)	8
Air supply- Sources of air supply including engine bleed, APU and ground cart; Air	
Conditioning- Air conditioning systems; Air cycle and vapour cycle machines Distribution	
systems; Flow, temperature and humidity control system.	
Pressurization - Pressurization systems; Control and indication including control and	
safety valves;	
Cabin pressure controllers. Safety and warning devices; Protection and warning devices.	
Equipment and Furnishings (ATA 25)	6
Emergency equipment requirements; Seats, harnesses and belts, Electronic emergency	
equipment requirements	
Cabin lay-out, cargo retention; Equipment lay-out; Cabin Furnishing Installation; Cabin	
entertainment equipment; Galley installation; Cargo handling and retention equipment;	
Air stairs. Lifting system; Emergency flotation systems;	
Flight Controls (ATA 27)	8
Primary controls: alleron, elevator, rudder, spoiler; Trim control; Active load control;	
High lift devices; Lift dump, speed brakes; System operation: manual, hydraulic, pneumatic,	
electrical, fly-by-wire; Artificial feel, Yaw damper, Mach trim, rudder limiter, gust locks	
systems; Balancing and rigging; Stall protection/warning system.	0
Fuel Systems (ATA 28)	8
System lay-out; Fuel tanks; Supply systems; Dumping, venting and draining; Cross- feed	
and transfer; indications and warnings; Keruening and deruening; Longitudinal balance rue	
Systems.	5
Hydraulic Power (AIA 29) System law out: Hydraulia fluida. Hydraulia reastrucing and accumulators. Drossura	5
system lay-out; Hydraulic hulds; Hydraulic reservoirs and accumulators; Pressure	
Pressure Control:	
Power distribution: Indication and warning systems: Interface with other systems	
Lee and Pain Protection (ATA 30)	3
Ice formation classification and detection: Anti-icing systems: electrical hot air and	3
chemical: Desicing systems: electrical hot air pneumatic and chemical: Rain repellant:	
Probe and drain heating: Wiper systems	
Landing Gear (ATA 32)	3
Construction, shock absorbing: Extension and retraction systems: normal and emergency:	
Indications and warning: Wheels, brakes, antiskid and auto-braking: Tyres: Steering: Air-	
ground sensing; Skids, floats.	
Abnormal Events (ATA 05)	2
AUTOFILIAL EVENUS (ATA US) a) Inspections following lightning strikes and HIDE papetration	4
a) inspections following neutring surves and mixer period auton.	1

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Page 33 of 58

b) Inspections following abnormal events such as heavy landings and flight through turbulence.

Instructional Strategy:

While imparting instructions, teacher should practically demonstrate the aircraft weighing and various procedures related to aircraft system on aircraft by referring aircraft manual. Students should be asked to maintain their log cards/ books.

Recommended Books:

- 1. 'Airframe and Power Plant Mechanics (AC 65-15A) -Airframe Hand Book FAA'.
- 2. 'Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft'.
- 3. Jeppesen, 'A & P Technician Air Frame Text Book'.
- 4. Larry Reithmaier, 'Aircraft Repair Manual (FAA-AC-43.13)'.
- 5. M. Guillon, 'Aviation Maintenance Technician Hand Book', FAA Hydraulic Servo Systems.
- 6. E.H.J. Pallett, 'Aircraft Instruments'.
- 7. E.H.J. Pallett, 'Aircraft Electrical System'.

AIRCRAFT SYSTEMS-I LAB. Subject Code: BAEE3-322 L T P C Duration: 60 Hrs. 0 0 4 2

S.N.	Contents	H <mark>rs</mark> .
01	Jacking and leveling of an aircraft. Record caution, warnings and procedure	6
02	Locate and inspect Bleed components installed on aircraft and use	4
03	Locate and inspect components of air-conditioning system and indications and use maintenance manual.	4
04	Locate and inspect components of aircraft pressurization system and safety devises and use maintenance manual	4
05	Replace passenger seats and Check seat belts for serviceability.	4
06	Identification and inspection of flight control system	4
07	Rigging and operational check flight control systems	8
08	Identification and inspection of landing gear systems. Wheel and Brake removal / installation.	12
09	Identification and inspection of Fuel system	4
10	Quantity Indicating systems functional testing.	4
11	Inspection of aircraft hydraulic system and servicing	6
12	Inspection for lightning strike protection.	2

ELECTRONIC FUNDAMENTALS AND DIGITAL TECHNIQUES-ISubject Code: BAEE3-423L T P CDuration: 60 Hrs.3 1 0 43 1 0 4

Rationale:

This subject comes under the Core Technology group and will enable the students to comprehend the theory, concepts, characteristics and working principles of basic electronic devices and their applications in electronic circuits. The knowledge of various devices acquired by the students will help them to design, test, troubleshoot and repair electronic circuits

Learning Outcomes:

- 1. After undergoing this course, the students will be able to:
- 2. Classify various types of Diodes and transistors
- 3. Characteristics, and properties of Operational Amplifier
- Acquire knowledge about printed circuit board.
 Know about principle of operation of resolvers, differential, control and torque.
- 6. Classification of numbering system
- 7. To get knowledge about microprocessor

Contents	Hrs.
Semiconductors	8
Diode symbols; Diode characteristics and properties; Diodes in series and parallel; Main	
characteristics and use of silicon controlled rectifiers (thyristors), light emitting diode,	
photo conductive diode, varistor, rectifier diodes; Functional testing of diodes.	
Materials, electron configuration, electrical properties; P and N type materials: effects of	
impurities on conduction, majority and minority characters; PN junction in a	
semiconductor, development of a potential across a PN junction in unbiased, forward	
biased and reverse biased conditions; Operation and function of diodes in the following	
circuits: clippers, clampers, full and half wave rectifiers, bridge rectifiers, voltage	
doublers and triplers; Detailed operation and characteristics of the following devices:	
silicon controlled rectifier (thyristor), light emitting diode, Shottky diode, photo	
conductive diode, varactor diode, varistor, rectifier diodes, Zener diode.	
Transistors	8
Transistor symbols; Component description and orientation; Transistor characteristics	
and properties.	
Construction and operation of PNP and NPN transistors; Base, collector and emitter	
configurations; Testing of transistors. Basic appreciation of other transistor types and their	
uses. Application of transistors: classes of amplifier (A, B, C);	
Simple circuits including: bias, decoupling, feedback and stabilization;	
Multistage circuit principles: cascades, push-pull, oscillators, multi-vibrators, flip- flop	
circuits.	
Integrated Circuits	8
Description and operation of logic circuits and linear circuits/operational amplifiers.	
Description and operation of logic circuits and linear circuits; Introduction to operation	
and function of an operational amplifier used as: integrator, differentiator, voltage	
follower, comparator; Operation and amplifier stages connecting methods: resistive	
capacitive, inductive (transformer), inductive resistive (IR), direct;	
Advantages and disadvantages of positive and negative feedback Operation and use of	
encoders and decoders., functions of encoders type. Uses of medium, large and very	
large scale integration.	
Printed Circuit Boards	4
Description and use of printed circuit boards.	10
Servomechanisms	10
Understanding of the following terms: Open and closed loop systems, feedback, follow up,	
analogue transducers; Principles of operation and use of the following synchro system	
components/features: resolvers, differential, control and torque, transformers, inductance	
and capacitance transmitters.	
Understanding of the following terms: Open and closed loop, follow up, servomechanism,	
analogue, transducer, null, damping, feedback, dead band; Construction operation and use	
of the following synchro system components: resolvers, differential, control and torque, E	

and I transformers, inductance transmitters, capacitance transmitters, synchronous transmitters; Servomechanism defects, reversal of synchro leads, hunting.	
Numbering Systems	3
Numbering systems: binary, octal and hexadecimal; Demonstration of conversions	
between the decimal and binary, octal and hexadecimal systems and vice versa.	
Data Conversion	3
Analogue Data, Digital Data: Operation and application of analogue to digital, and digital	
to analogue converters, inputs and outputs, limitations of various types.	
Data Buses	3
Operation of data buses in aircraft systems, including knowledge of ARINC and other	C
specifications	
Logic Circuits	3
Identification of common logic gate symbols tables and equivalent circuits. Applications	Ũ
used for aircraft systems, schematic diagrams. Interpretation of logic diagrams	
Microprocessors	6
Functions performed and overall operation of a microprocessor: Basic operation of each	U
of the following migron reasons alements: control and processing unit, clock register	
of the following incroprocessor elements, control and processing unit, clock, register,	
arithmetic logic unit.	
Fiber Optics	4
Advantages and disadvantages of fiber optic data transmission over electrical wire	
propagation; Fibre optic data bus; Fiber optic related terms; Terminations; Couplers,	
control terminals, remote terminals; Application of fiber optics in aircraft systems	

Instructional Strategy:

While imparting instructions, teacher should show various types of engineering materials to the students. Students should be asked to collect various electronics components available in the market.

Recommended Books:

- 1. Bemard Grob, 'Basic Electronics'.
- 2. Malvino, 'Digital Fundamentals'.
- 3. V.K. Mehta, 'Leech Principles of Electronics'.

ELECTRONIC FUNDAM	IENTALS AND DIGITA	L TECHNIQUES-I LAB.
Subject Code: BAEE3-424	LTPC	Duration: 60 Hr

LTPC

Duration: 60 Hrs.

0042	
------	--

S.N.	Contents	Hrs.
01	Identification of basic electronic components (diodes, transistors), digital	4
	Multimeter, Function Generator and Oscilloscope	
02	Practical on I-V Characteristics of (a) p-n junction Diode, and (b) Zener diode.	4
03	Study of Clipping and Clamping circuits	4
04	Conversion of A C Voltage using (a) Half wave rectifier and (b) Full wave rectifier	4
	(FWR).	
05	Uses of basic electronic components (diodes, transistors), digital Multimeter,	4
	Function Generator and Oscilloscope	
06	Construct a model to study fixed Bias and Voltage divider bias configuration for	4
	CE transistor.	
07	Construct a model to study Single Stage CE amplifier of given gain	4
08	Construct a model to study correlation between different numbering systems	4

09	Construct a model to study digital to analogue converters	4
10	Construct a model to study typical data buses used in aircraft system.	4
11	Functions performed and overall operation of a microprocessor;	4
12	Demonstrate fiber optic data transmission over electrical wire propagation;	4
13	Construct a Universal Gates and test	4
14	Construct a flip flop circuit using elementary gates	4
15	Construct a seven segment display driver	4

AIRCRAFT MATERIALS AND HARDWARE

Subject Code: BAEE3-425

L T P C 3104

Duration: 60 Hrs.

Rationale : Lot of development has taken place in the field of materials and hardware. New materials are being developed and it has become possible to change the properties of materials to suit the requirements. AME students in this course are required to make use of different materials hardware for various applications. For this purpose, it is necessary to teach them basics of metal structure, properties, usage various ferrous and non-ferrous, Composite and Non-Metallic materials and various types of Fasteners used in aircraft. This subject aims at developing knowledge about the characteristics and usage of various types of materials aircraft hardware used in the Aircraft industries.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Distinguish between metals and non-metals and ferrous and non-ferrous materials.
- 2. Classify various types of metals and non-metals.
- 3. Characteristics, properties and identification of common alloy steels used in aircraft.
- 4. Characteristics, properties and identification of common non-ferrous materials used in aircraft;
- 5. Heat treatment and application of non-ferrous materials;
- 6. Characteristics, properties and identification of common composite and non-metallic materials, other than wood, used in aircraft.
- 7. Characteristics, properties and types of fabrics used in aeroplane; Inspections methods for fabric.
- 8. Thread forms, dimensions and tolerances for standard threads used in aircraft; measuring screw threads

Contents	Hrs.
Aircraft Materials — Ferrous	12
(a) Characteristics, properties and identification of common alloy steels used in	
aircraft; Heat treatment and application of alloy steels;	
(b) Testing of ferrous materials for hardness, tensile strength, fatigue strength and	
impact resistance.	
Aircraft Material — Non-Ferrous	12
(a) Characteristics, properties and identification of common non-ferrous materials used	
in aircraft; Heat treatment and application of non-ferrous materials;	
(b) Testing of non-ferrous material for hardness, tensile strength, fatigue strength and	
impact resistance.	
Aircraft Materials - Composite and Non- Metallic	10
(a) Characteristics, properties and identification of common composite and non-metallic	
materials, other than wood, used in aircraft; Sealant and bonding agents.	

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Page 37 of 58

(b) The detection of defects/deterioration in composite and non-metallic material.	
Repair of composite and non-metallic material.	
Wooden Structures	8
Construction methods of wooden airframe structures;	
Characteristics, properties and types of wood and glue used in airplanes; Preservation	
and maintenance of wooden structure;	
Types of defects in wood material and wooden structures;	
The detection of defects in wooden structure;	
Repair of wooden structure.	
Fabric covering & Non-Metals	4
Characteristics, properties and types of fabrics used in aeroplane;	
Inspections methods for fabric;	
Types of defects in fabric;	
Repair of fabric covering.	
Fasteners Screw threads	2
Screw nomenclature; Thread forms, dimensions and tolerances for standard threads	
used in aircraft; measuring screw threads;	
Bolts, studs and screws	2
Bolt types: specification, identification and marking of aircraft bolts, international	
standards;	
Nuts: self-locking, anchor, standard types:	
Machine screws: aircraft specifications:	
Studs: types and uses, insertion and removal: Self tapping screws, dowels.	
Locking devices	2
Tab and spring washers, locking plates, split pins, palnuts, wire locking, quick release	
fasteners, keys, circlips, and cotter pins and techniques.	
Aircraft rivets	4
Types of solid and blind rivets: specifications and identification, heat treatment.	-
Riveting	4
Riveted joints, rivet spacing and pitch:	-
Tools used for riveting and dimpling:	
Inspection of riveted joints.	

Instructional Strategy:

While imparting instructions, teacher should show various types of engineering materials to the students. Students should be asked to collect samples of various materials available in the market. Visits to industry should be planned to demonstrate use of various types of materials or Heat Treatment Processes in the industry.

Means of Assessment:

Assignments and quiz/class tests, mid-term and end-term written tests, model/prototype making

- 1. Aircraft handbook FAA (AC 65-15 A)
- 2. Civil Aircraft Inspection Procedures (CAIP 459-Part I, Basic)
- 3. Airframe & Power Plant Mechanics (General Handbook EA-AC 65-9A) FAA
- 4. Titterton, 'Aircraft Materials & Processes'.
- 5. A.C. Parkinson, 'Machine Drawing'.
- 6. Cindy Foreman Electricity, 'Advanced Composites (EA-358)'.
- 7. CAIP 562

AIRCRAFT MATERIALS AND HARDWARE LAB.

Subject Code: BAEE3-426

LTPC

Duration: 60 Hrs.

Duration: 60 Hrs.

S.N.	Contents	Hrs.
01	Testing of Non -Ferrous materials for hardness, tensile, Fatigue strength	4
02	Testing of ferrous materials for hardness, tensile, Fatigue strength	4
03	Identification of the characteristics and properties of common composite and	4
	non-metallic materials other than wood, used in aircraft.	
04	Detection of defects/deterioration in composite and non-metallic material	4
05	Identification of the characteristics and properties of common types of wood and	4
	glue used in aircraft.	
06	Identification and detection of defects in wood material and wooden structures	4
07	Simple repair of composite and non-metallic materials and structures	4
08	Inspection and Repair of wooden structures.	4
09	Identification of the characteristics and properties of common fabrics and	
	adhesives used in wooden structure aircraft.	
10	Identification of defects and Repair of fabric covering.	4
11	Use of basic tools and equipment for: cutting, forming and joining commonly	4
	used materials.	
12	Identification of Aircraft metallic materials	4
13	Identification of aircraft non-materials used on aircraft	4
14	Identification of various rivets and use of any one riveting technique	4
15	Identification of various fasteners and locking devices used in aircraft	4

AIRCRAFT MAINTENANCE PRACTICES

Subject Code: BAEE3-427	LTPC
	3104

Rationale :

Aircraft Maintenance Engineers are responsible for the maintenance and repair of aircraft for this purpose they must have proper knowledge of aircraft maintenance procedures and tools used for maintenance. Proper handling, care and controls of their personal tools.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Aspects of safe working practices- Aircraft and workshop.
- 2. Knowledge on fire and extinguishing agents.
- 3. Care, control and use common hand tools, Common power tools.
- 4. Use of precision measuring tools.
- 5. Lubrication equipment and methods.
- 6. Engineering Drawings, Diagrams and Standards.
- 7. Classes of fits
- 8. Standard methods for checking shafts, bearings and other parts.
- 9. Causes of corrosion. Types of corrosion and their identification.
- 10. Welding, Brazing, Soldering and Bonding methods.
- 11. Disassembly, Inspection, Repair and Assembly Techniques.
- 12. Maintenance Procedures
- 13. Power Transmissions
- 14. Bearings, Control Cables, Pipes and Hoses and springs

Contents	Hrs.	
Safety Precautions-Aircraft and Workshop	4	
Aspects of safe working practices including precautions to take when		
working with electricity, gases especially oxygen, oils and chemicals;		
Instructions on the remedial action to be taken in the event of a fire or		
another accident with one or more of these hazards including knowledge on		
extinguishing agents.		
Workshop Practices	4	
Care of tools, control of tools, use of workshop materials; Dimensions,		
allowances and tolerances, standards of workmanship; Calibration of tools		
and equipment, calibration standards.		
Tools	4	
Common hand tool types; Common power tool types; Operation and use of		
precision measuring tools; Lubrication equipment and methods. Operation,		
function and use of electrical general test equipment;		
Engineering Drawings, Diagrams and Standards	4	
Drawing types and diagrams, their symbols, dimensions, tolerances and		
projections: Identifying title block information: Microfilm, microfiche and		
computerized presentations; Specification 100 of the Air Transport		
Association (ATA) of America; Aeronautical and other applicable		
standards including ISO, AN, MS, NAS and MIL: Wiring diagrams and		
schematic diagrams.		
Fits and Clearances	4	
Drill sizes for bolt holes, classes of fits: Common system of fits and		
clearances; Schedule of fits and clearances for aircraft and engines; Limits		
for bow, twist and wear;		
Standard methods for checking shafts, bearings and other parts.		
Corrosion	6	
a) Chemical fundamentals; Formation by, galvanic action process,		
microbiological stress;		
b) Types of corrosion and their identification; Causes of corrosion; Material		
types, susceptibility to corrosion.		
Welding, Brazing, Soldering and Bonding	5	
a) Soldering methods; inspection of soldered joints.		
b) Welding and brazing methods; Inspection of welded and brazed joints;		
Bonding methods and inspection of bonded joints.		
Disassembly, Inspection, Repair and Assembly Techniques	9	
a) Types of defects and visual inspection techniques. Corrosion removal,		
assessment and re-protection.		
b) General repair methods, Structural Repair Manual; Ageing, fatigue and		
corrosion control programs;		
c) Non-destructive inspection techniques including, penetrant,		
radiographic, eddy current, ultrasonic and borescope methods.		
d) Disassembly and re-assembly techniques.		
e) Trouble shooting techniques		
Maintenance Procedures	3	
Maintenance planning; Modification procedures; Stores procedures;		
Certification/release procedures; Interface with aircraft operation;		
Maintenance Inspection/Quality Control/Quality Assurance; Additional		
maintenance procedures; Control of life limited components		

Bearings	3	
Purpose of bearings, loads, material, construction; Types of bearings and		
their application.		
Testing, cleaning and inspection of bearings; Lubrication requirements of		
bearings; Defects in bearings and their causes.		
Transmissions	3	
Gear types and their application; Gear ratios, reduction and multiplication		
gear systems, driven and driving gears, idler gears, mesh patterns; Belts		
and pulleys, chains and sprockets.		
Inspection of gears, backlash; Inspection of belts and pulleys,		
chains and sprockets; Inspection of screw jacks, lever devices, push-pull		
rod systems.		
Control Cables	3	
Types of cables; End fittings, turnbuckles and compensation devices;		
Pulleys and cable system components; Bowden cables; Aircraft flexible		
control systems.		
Swaging of end fittings; Inspection and testing of control cables; Bowden		
cables; aircraft flexible control systems.		
Pipes and Unions	3	
(a) Identification of, and types of rigid and flexible pipes and their		
connectors used in aircraft;		
(b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air		
system pipes.		
Pipes and Hoses	3	
Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft		
pipes and hoses; Installation and clamping of pipes.		
Springs	2	
Types of springs, materials, characteristics and applications. Inspection and		
testing of springs.		

Instructional Strategy:

While imparting instructions, teacher should show various types of tools used in Aircraft Maintenance to the students. Visits to Aircraft Maintenance workshop should be planned to demonstrate use of various types of tools.

- 1. Airframe and Power Plant Mechanics (AC 65-15A)-Airframe Hand Book FAA
- 2. Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft
- 3. Kroes, Watkin and Delph, 'Aircraft Maintenance and Repair'.
- 4. Acceptable Methods, Techniques and practices (FAA)-EA-AC 43.13-1 A & 2A.
- 5. FAA, 'Aviation Maintenance Technician Hand Book'.

AIRCRAFT MAINTENANCE PRACTICES LAB.			
Subject Code: BAEE3-428	L T P C	Duration: 60 Hrs.	
	0042		

S.N.	Contents	Hrs.
01	Draw different projections of a given object – Three View Diagram simple	12
	object, structural member, and joints	
02	Fit and remove thread inserts	4

03	Use of precision measuring instruments, selection, handling of instruments and	6
	marking	
04	Removal and installation of hydraulic system pressurized / unpressurized	6
	components – safety, handling precautions, selection of appropriate tools and	
	manuals. Use zonal numbers to record location. Use parts catalogue &	
	component location manual to locate components. Identify pipes and hoses	
05	Removal and installation of pneumatic system pressurized / unpressurized	6
	components – safety, handling precautions, selection of appropriate tools and	
	manuals. Use zonal numbers to record location. Use parts catalogue &	
	component location manual to locate components. Identify pipes and hoses	
06	Removal and installation of oxygen system components – safety, handling	4
	precautions, selection of appropriate tools and manuals. Use zonal numbers to	
	record location. Use parts catalogue & component location manual to locate	
	components. Identify pipes and hoses	
07	Visual inspection of various types of surface defects of aircraft structure using	8
	simple aids like magnifying glass, light and mirror. Use zonal and station	
	numbers to record defect location	
08	Visual inspection of various types of surface defects of aircraft structure and	8
	system components like bearings, gears, chain, pulley, spring and cables using	
	simple aids like magnifying glass, light and mirror and record defects.	
09	Selection and use of lubrication technique of bearings, flight / engine / propeller	2
	controls and undercarriages. Identifying lubricants.	

AVIONICS L T P C

Subject Code: BAEE3-429

3104

Dura<mark>tio</mark>n: 60 H<mark>rs</mark>.

Rationale :

Maxwell first suggested the existence of electromagnetic waves in 1864. In 1894, Marconi demonstrated the commercial potential of the phenomenon that Maxwell predicted and Hertz actually used in his apparatus. Marconi's system of wireless telegraphy proved to be invaluable for maritime communications. The use of radio equipment & avionics in general has increased markedly for all types of aircraft during the past century. Today the term avionics, which is a combination of the words aviation electronics, encompasses a variety of electronic system. This subjects aims at developing knowledge of avionics system installed in aircraft can include communications (COMM), navigation (NAV) & autopilot.

Learning Outcomes:

After undergoing this syllabus, the students will be able to:

- 1. Understand about function of aircraft radio communication system.
- 2. Understand about function of aircraft radio navigation system.
- 3. Understand about automatic flight control system.
- 4. Understand about on board maintenance system.
- 5. Understand about on board information sharing system.
- 6. Understand about Avionic General Test Equipment.

Contents	Hrs.
Communication (ATA 23)	08
Fundamentals of radio wave propagation, antennas, transmission lines, communication,	
receiver and transmitter; Working principles of following systems: Very High Frequency	

(VHF) communication; High Frequency (HF) communication; Audio; Emergency	
Locator Transmitters; Cockpit Voice Recorder; ARINC communication and reporting.	
Navigation (ATA 34)	18
Very High Frequency omnidirectional range (VOR); Automatic Direction Finding (ADF);	
Instrument Landing System (ILS); Microwave Landing System (MLS); Distance	
Measuring Equipment (DME); Very Low Frequency and hyperbolic	
navigation(VLF/Omega); Doppler navigation; Area navigation RNAV systems; Flight	
Management Systems (FMS); Global Positioning System (GPS), Global Navigation	
Satellite Systems (GNSS); INS (Inertial Navigation System); Air Traffic Control	
transponder, secondary surveillance radar; Traffic Alert and Collision Avoidance	
System(TCAS).	
Weather Avoidance Radar; Radio altimeter; Inertial reference system (IRS).	
Auto-flight (ATA 22)	15
Fundamentals of automatic flight control including working principles and current	
terminology; Flight Director System; Command signal processing; Modes of operation -	
roll, pitch and yaw channels; Yaw dampers; Auto-throttle systems; Automatic Landing	
Systems - principles & categories, modes of operation: Approach, glide slope, land, go-	
around; system monitors and failure conditions. Fly by Wire (FBW).	
On board Maintenance Systems (ATA 45)	05
Central maintenance computers; Data loading system; Electronic library system;	
Printing; Structure monitoring (damage tolerance monitoring). Software management	
control: Awareness of restrictions, airworthiness requirements and possible catastrophic	
effects of unapproved changes to software programmes.	
Information Systems (ATA 46)	10
The units and components which furnish a means of storing, updating and retrieving	
digital information traditionally provided on paper, microfilm or microfiche - includes	
units that are dedicated to the information storage and retrieval functions such as the	
electronic library mass storage and controller & Does not include units or components	
installed for other uses and shared with other systems such as flight deck printer or	
general use display; Typical examples include Air Traffic and Information Management	
Systems and Network Server Systems; Aircraft General Information System; Flight Deck	
Information System; Maintenance Information System; Passenger Cabin Information	
System; Miscellaneous Information System.	
Avionic General Test Equipment	04
Operation, function and use of avionic general test equipment. Cabin System; Information	
system.	

Instructional Strategy:

While imparting instructions

- 1. Instructor must show various images, videos & animation related to the topic with the help of projector (OHP).
- 2. With the help of Aircraft Flight Simulator demonstrate different aircraft radio system to the students.
- 3. Arrange visit to different Airline & MROs to demonstrate functioning of different aircraft system and its components installed into actual aircraft engage into operation.

- 1. E.H.J. Pallett, 'Micro Electronics Aircraft System'.
- 2. James W. Wasson, 'Avionics Systems Operation & Maintenance'.
- 3. Thomas K. Eismin, 'Aircraft Electricity and Electronics'.

- 4. Civil Aircraft Inspection Procedure (CAP 459) Part-II (Aircraft).
- 5. Millman and Halkias, 'Integrated Electronics'.
- 6. J. Powell, 'Aircraft Radio System'.
- 7. George Kennedy, 'Electronic Communication System'.
- 8. Kayton & Fried, 'Avionics Navigation Systems'.
- 9. Borje Forssell, 'Radio Navigation System'.

	AVIONICS LABS.	
Subject Code: BAEE3-430	L T P C 0 0 4 2	Duration: 60 Hrs.

S.N.	Contents	Hrs.
01	VHF / HF Communications LRU replacement and Communication Check.	4
02	Use of various test equipment for avionics system maintenance.	2
03	VHF Navigation LRU replacement and system tests.	4
04	Inspection and testing of ELT.	2
05	CVR - switching and recording.	2
06	Antenna replacement and system testing.	4
07	Radio Standing Wave ratio Measurement Tests.	4
08	Function Testing of ATC / TCAS system components.	4
09	Operation test of Weather Radar system.	2
10	Intercommunication / Passenger Address Component function testing.	2
11	ILS / VOR Systems function testing using appropriate test equipment e.g. Nav 401/402.	4
12	Radio Altimeter system test utilizing appropriate (555) test set.	4
13	DME / VOR Functional Testing utilizing appropriate test set.	4
14	ADF component functions and tests.	4
15	Functional check of inertial navigation system.	4
16	Operational testing of Flight Director System's and auto pilot system.	4
17	Locate Auto throttle systems components and bite test.	2
18	Perform BITE on Central Maintenance system.	4

ELECTRONIC FUNDA	MENTALS AND DIGIT	AL TECHNIQUES-II
Subject Code: BAEE3-531	L T P C	Duration: 60 Hrs.
	3104	

Rationale:

This subject comes under the Core Technology group and will enable the students to comprehend the theory, concepts, characteristics and working principles of basic electronic devices and their applications in electronic circuits. The knowledge of various devices acquired by the students will help them to design, test, troubleshoot and repair electronic circuits.

Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Understand Computer related terminology and typical memory devices
- 2. Acquire knowledge of Operation, application and identification in logic diagrams of multiplexers.
- 3. Understand Principles of operation of common types of displays Functions that may be typically integrated in the Integrated Modular Avionic (IMA).

Contents	Hrs.
Basic Computer Structure	9
Computer terminology (including bit, byte, software, hardware, CPU, IC, and various	
memory devices such as RAM, ROM, PROM); Computer technology (as applied in	
aircraft systems).	
Computer related terminology; Operation, layout and interface of the major components	
in a microcomputer including their associated bus systems; Information contained in	
single and multi-address instruction words; Memory associated terms;	
Operation of typical memory devices; Operation, advantages and disadvantage of the	
various data storage systems.	
Multiplexing	3
Operation, application and identification in logic diagrams of multiplexers and	
demultiplexers.	
Electronic Displays and Instrument Systems	18
Principles of operation of common types of displays used in modern aircraft, including	
Cathode Ray Tubes, Light Emitting Diodes and Liquid Crystal Display. Electronic Flight	
Instrument Systems;	
Typical systems arrangements and cockpit layout of electronic instrument systems	
ECAM-Electronic Centralized Aircraft Monitoring; EFIS-Electronic Flight Instrument	
System; EICAS-Engine Indication and Crew Alerting System Instrument warning	
systems including master warning systems and centralized warning panels;	
Typical Electronic/Digital Aircraft Systems	10
General arrangement of typical electronic/digital aircraft systems and associated BITE	
(Built in Test Equipment) testing such as: ACARS-ARINC	
Communication and Addressing and Reporting System; Integrated modular Avionics;	
Integrated Modular Avionics (ATA 42)	12
Functions that may be typically integrated in the Integrated Modular Avionic (IMA)	
modules are, among others: Bleed Management, Air Pressure Control, Air Ventilation	
and Control, Avionics and Cockpit Ventilation Control, Temperature Control, Air Traffic	
Communication,	
Avionics Communication Router, Electrical Load Management, Circuit Breaker	
Monitoring, Electrical System BITE, Fuel Management, Braking Control, Steering	
Control, Landing Gear Extension and Retraction, Tyre Pressure Indication, Oleo Pressure Indication, Preka Temperature Monitoring, etc.; Core System: Naturely	
Components	
Cohip Systems (ATA 44)	Q
The units and components which furnish a means of entertaining the passengers and	0
providing communication within the aircraft (Cabin Intercommunication Data System)	
and between the aircraft cabin and ground stations (Cabin Network Service) - Includes	
voice data music and video transmissions: The Cabin Intercommunication Data System	
provides an interface between cocknit/ cabin crew and cabin systems. These systems	
support data exchange of the different related I RU's and they are typically operated via	
Flight Attendant Panels.	

The Cabin Network Service typically consists on a server, typically interfacing with, among others, the following systems: Data/Radio Communication; In-Flight Entertainment System;

The Cabin Network Service may host functions such as:

Access to pre-departure/departure reports; E-mail/intranet/Internet access; Passenger database; Cabin Core System; In-flight Entertainment System; External Communication System; Cabin Mass Memory System; Cabin Monitoring System; Miscellaneous Cabin System.

Instructional Strategy:

While imparting instructions, teacher should show various types of engineering materials to the students. Students should be asked to collect various electronics components available in the market.

Recommended Books:

- 1. Bemard Grob, 'Basic Electronics'.
- 2. Malvino and Leech, 'Digital Fundamentals'.
- 3. V K Mehta, 'Principles of Electronics'.

ELECTRONIC FUNDAMENTALS AND DIGITAL TECHNIQUES-II LAB.Subject Code: BAEE3-532L T P CDuration: 60 Hrs.0 0 4 20 0 4 2Duration: 60 Hrs.

S.N.	Contents	H <mark>rs</mark> .	
01	Familiarization with computer architecture and its components	4	
02	Identification of components of Display systems	4	
03	Operation check of Display system.	4	
04	Familiarization with CRT and various components associated with EFIS	4	
05	Identification of components in engine display systems	4	
06	Bite / self-test of EFIS system.	4	
07	BITE on different aircraft systems.	4	
08	Familiarization with components of system associated with Integral modular	4	
	avionics systems such Air Pressure Control, Air Ventilation and Control,		
	Avionics and Cockpit Ventilation Control, Temperature Control, Air Traffic		
	Communication.		
09	Operation check of ventilation control system.	4	
10	Operation check of IFE system.	4	
11	Operation check of intercom system.	4	
12	Operation check of intercom system.	4	
13	Inspection of IFE system, intercom system and other cabin systems.	4	
14	Operation of temperature control system	4	
15	Identify ECAM system components and carry out test	4	

	WORKSHOP PRACTICES	
	WUKKSHUP PKAUTICES	
Subject Code: BAEE3-533	L T P C	Duration: 60 Hrs.
	3104	

Rationale:

AME students are responsible for supervising repair and maintenance of the aircraft. For this purpose, knowledge about various workshop machinery operations and processes are required to be imparted.

Learning Outcomes:

- 1. After undergoing the subject, students will be able to:
- 2. Safely handling of workshop machineries.
- 3. Knowledge of sheet working.
- 4. Knowledge of various Hand tools for working on bench.
- 5. Fabricate welding joints using gas welding, arc welding,
- 6. Inspect various welding joints, castings, forgings.
- 7. Prepare sand moulds manually.
- 8. Pipe bending and flaring, pipe inspection.
- 9. Identification, hose end fittings.

Contents	Hrs.
Safety & Precautions to be taken while working in the Machine shop. Various types of	4
aids to be used while working on machines. Basic Machining	
Material handling - Sheet Metal	6
Marking out and calculation of bend allowance; Sheet metal working, including bending	
and forming; Inspection of sheet metal work.	
Various types of gears and usage and inspection	8
Various Hand tools for working on bench	
Drills and drilling procedures. Simple Turning and Taper turning.	6
Various types of measuring and layout tools	
Welding Techniques: Preparation of arc welding of butt joints, lap joints and tee	8
joints. Gas welding practice; Metric Measurement	
Various forms of Surface Finish and Surface measurement, Various forms of Heat	16
Treatment & Testing of Materials, Various forms of Taps & Dies	
a) Smithy operations, upsetting, swaging, setting down and bending	8
b) Foundry operations like mould preparation for gear and step cone pulley	
Hoses and Pipes	4
Pneumatic, Hydraulic pipes and end fitting identification, pipe bending and flaring, pipe	
inspection. Types of hoses, identification, hose end fittings, house routing and inspection.	

Instructional Strategy:

- 1. Teachers should lay special emphasis in making the students conversant with concepts, principles, procedures and practices related to various workshop operations and processes.
- 2. Use of audio-visual aids/video films should be made to show specialized operations.

- 1. K.P. Roy, 'Workshop Technology', A.K. Hajra Chowdhary, 2000.
- 2. James Anderson, 'Shop Theory'.

WOR	KSHOP PRACTICES LA	АВ.
Subject Code: BAEE3-534	L T P C	Duration: 60 Hrs.
-	0040	

S.N.	Contents	Hrs.
01	Sheet metal marking, cutting, sheet metal structural defects	4
02	Practice of 1st model. Butt Joint and inspect	4
03	Practice of 2nd model. Lap Joint and inspect	4
04	Practice of 3rd model. V-Joint and inspect	4
05	Practice of 3rd model. T-Joint and inspect	4
06	Demonstration of 1st model - Dovetail 4	4
07	Demonstration of 2nd model- Radius Gauge	4
08	Inspection of various welded samples with / without defects and record observation	4
09	Soldering Exercises, inspection and defects	4
10	Cable splicing and swaging	4
11	Pipe bending and inspection of pipe assembly	4
12	Taps and Dies, thread cutting and inspection	4

AIRCRAFT SYSTEMS-II L T P C

3104

Subject Code: BAEE3-535

Duration: 60 Hrs.

Rationale:

This subject provides the knowledge about Batteries Installation and Operation of aircraft lights system and will enable the students to comprehend the theory, concepts and working of various instruments and taking readings, system lay-out of oxygen system and Integrated Modular Avionics This will help them to troubleshoot the faults in the systems

Learning Outcomes:

After successful completion of course students should be able to

- 1. To know about basic principle of flight instruments that how they are useful to pilots for operation of flight.
- 2. To understand about what types of operating systems are used to conduct successful operation.
- 3. To understand about how aircrafts are maintained
- 4. To understand about how controls, operate an aircraft.

Contents	Hrs.
Aircraft Electrical Power System (ATA24)	8
Batteries Installation and Operation; DC power generation; AC power generation;	
Emergency power generation; Voltage regulation; Power distribution; Inverters,	
transformers, rectifiers;	
Circuit protection; External/Ground power;	
Aircraft Lights System (ATA 33)	4
External: navigation, anti-collision, landing, taxiing, ice; Internal: cabin, cockpit, cargo;	
Emergency Lights.	
Instrument System (ATA34)	15
Direct reading pressure and temperature gauges; Temperature indicating systems; Fuel	
quantity indicating systems; Gyroscopic principles; Artificial horizons; Attitude director,	

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Page 48 of 58

direction indicator, horizontal situation indicator, turn and slip indicators, turn coordinator;	
Directional gyros; Ground Proximity warning Systems; Compass systems: direct reading,	
remote reading; Flight Data Recording systems; Stall warning systems and angle of attack	
indicating systems;	
Vibration measurement and indication; Glass cockpit.	
Oxygen System(ATA35)	8
System lay-out: cockpit, cabin; Sources, storage, charging and Distribution; Supply	
regulation; Indications and warnings;	
Fire Protection (ATA26)	6
a) Fire and smoke detection and warning systems; Fire extinguishing	
systems; System tests.	
b)Portable fire extinguisher.	
Water/Waste (ATA38)	4
Water system lay-out, supply, distribution, servicing and draining; Toilet system lay-out,	
flushing and servicing; Corrosion aspects.	
Integrated Modular Avionics (ATA42)	10
Functions that may be typically integrated in the Integrated Modular Avionic (IMA)	
modules are, among others: Bleed Management, Air Pressure Control, Air Ventilation and	
Control, Avionics and Cockpit Ventilation Control, Temperature Control, Air Traffic	
Communication,	
Avionics Communication Router, Electrical Load Management, Circuit Breaker	
Monitoring, Electrical System BITE, Fuel Management, Braking Control, Steering	
Control, Landing Gear Extension and Retraction, Tyre Pressure Indication, Oleo Pressure	
Indication, Brake Temperature Monitoring, etc.: Core System: Network Components.	
Door and Door Warning	5
Type of Doors, Sensors, Escape Slides, Door warning systems, Inspections techniques	-

Instructional Strategy:

While imparting instructions, teacher should practically demonstrate the aircraft weighing and various procedures related to aircraft system on aircraft by referring aircraft manual. Students should be asked to maintain their log cards/books.

- 1. Keith W. Bose, 'Aviation Electronics'.
- 2. E.H.J. Pallett, 'Aircraft Instruments'.
- 3. C.A. Williams, 'Aircraft Instruments'.
- 4. James W. Wasson, 'Avionics Systems Operation & Maintenance'.
- 5. A. Typers & R.B. Miles, 'Principles of Servo Mechanism'.
- 6. Bent McKinley and also by Eismin/Bent McKinley, 'Aircraft Electricity and Electronics'.
- 7. Civil Aircraft Inspection Procedure (CAP 459) -Part II Aircraft
- 8. Winston Merkey John Hovorka, 'The Mechanism of Inertial Position and Heading Indication'.

	AIRCRAFT SYSTEMS-II LAB.	
Subject Code: BAEE3-536	L T P C	Duration: 60 Hrs.
	0042	

S.N.	Contents	Hrs.
01	Reading and interpretation of electrical schematic and wiring diagrams and	4
	Identification of components of electrical power supply system.	
02	Replacement of switches and circuit breakers and system check	4

03	Installation and operation check of Batteries in aircraft	4
04	Generator power check / voltage adjustment.	4
05	Internal lighting, replace bulb and filament.	4
06	Operational check of GPWS	4
07	Operational check-up of stall warning system and angle of attack indicating system	4
08	Operational check of temperature indicating system	4
09	Gyroscopic Instrument component replacements and functional tests.	4
10	Inspection and operation check of fuel quantity indication	4
11	Functional check of RR compass	4
12	Removal and Installation of Crew O2 system component	4
13	Identification of FDR system components	4
14	Check operation of fire / smoke detection and warning system.	4
15	Identification of components of door warning system and its operation check	4

PISTON ENGINES AND PROPELLERS

Subject Code: BAEE3-537	L T P C	Duration: 60 Hrs.
	3104	

Rationale:

Lot of development has taken place in the field of piston engines as well as in propeller used in aircraft. New engine and propeller designs and technology are being developed continuously since its inception. AME students in this course are required to have knowledge of various types of piston engines, propellers and their applications in aircraft. For this purpose, it is necessary to teach them basics of the construction, systems of piston engines and propellers fitted in aircraft. This subject aims at developing knowledge about the basic design and functioning of different piston engines and propellers systems used in the Aircraft industries. Learning Outcomes:

After undergoing this course, the students will be able to:

- 1. Understand fundamentals, principle of operation, basic design and construction of piston engines.
- 2. Classify different types of propellers used on aircraft.
- 3. Know characteristics, properties and identification of piston engines used in aircraft.
- 4. Understand about fuel, oil and ignition system components of the engine.
- 5. Know about starting system, power augmentation system, fire protection system of the engine.
- 6. Piston engine monitoring, ground operation engine preservation and storage techniques.
- 7. Propeller pitch control, synchronising, propeller maintenance, preservation of propeller.

Contents	Hrs.
Fundamentals	2
Mechanical, thermal and volumetric efficiencies operating principles — 2 stroke, 4	
stroke, Otto and Diesel, Piston displacement and compression ratio;	
Engine configuration and firing order.	
Engine Performance	2
Power calculation and measurement; Factors affecting engine power; Mixtures/leaning,	
pre-ignition.	
Engine Construction	3
Crank case, crank shaft, cam shafts, sumps; Accessory gearbox; Cylinder and piston	
assemblies; Connecting rods, inlet and exhaust manifolds; Valve mechanisms;	

Propeller reduction gearboxes.	
Engine Fuel Systems	2
Carburettor Types, construction and principles of operation; Icing and heating.	
Fuel injection systems	2
Types, construction and principles of operation.	
Electronic engine control	4
Operation of engine control and fuel metering systems including electronic engine	
control (FADEC): Systems lay-out and components.	
Starting and Ignition Systems	3
Starting systems, pre-heat systems: Magneto types, construction and principles of	c
operation: Ignition harnesses, spark plugs: Low and high tension systems.	
Induction Exhaust and Cooling Systems	2
Construction and operation of induction systems including alternate air systems:	-
Exhaust systems, engine cooling systems — air and liquid	
Supercharging/ Turbo charging	3
Drinciples and purpose of supercharging and its effects on angine parameters	5
Construction and operation of supercharging/ turbo charging systems: System	
terminology: Control systems: System protoction	
Lubricanta and Errola	
Lubricants and reactions, Evel additives, Seferty presentions	2
Properties and specifications, Fuel additives, Safety precautions.	
Lubrication Systems	2
System operation/lay-out and components.	2
Engine Indication Systems	3
Engine speed; Cylinder head temperature; Coolant temperature; Oil pressure and	
temperature; Exhaust Gas Temperature; Fuel pressure and flow; Manifold pressure.	
Power Plant Installation	3
Configuration of firewalls, cowlings, acoustic panels, engine mounts, antivibration	
mounts, hoses, pipes, feeders, connectors, wiring looms, control cables and rods, lifting	
points and drains.	
Engine Monitoring and Ground Operation	5
Procedures for starting and ground run-up; Interpretation of engine power output and	
parameters; Inspection of engine and components: criteria, tolerances, and data	
specified by engine manufacturer.	
Engine Storage and Preservation	2
Preservation and de-preservation for the engine and accessories/ systems.	
Aircraft Propeller	4
Fundamentals; Blade element theory; High/low blade angle, reverse angle, angle of	
attack, rotational speed; Propeller slip; Aerodynamic, centrifugal, and thrust forces;	
Torque: Relative airflow on blade angle of attack: Vibration and resonance.	
Propeller Construction	3
Construction methods and materials used in wooden, composite and metal propellers:	-
Blade station, blade face, blade shank, blade back and hub assembly: fixed pitch.	
controllable pitch, constant speeding propeller: Propeller/spinner installation	
Proneller Pitch Control	3
Speed control and nitch change methods, mechanical and electrical/electronic	5
Feathering and reverse nitch: Over speed protection	
Propallar Synchronising	2
Synchronicing and synchronhasing agginment	4
synemonising and synemophasing equipment.	

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Page 51 of 58

Propeller Ice Protection	2
Fluid and electrical de-icing equipment.	
Propeller Maintenance	3
Static and dynamic balancing; Blade tracking; Assessment of blade damage, erosion,	
corrosion, impact damage, delamination; Propeller treatment/repair schemes;	
Propeller engine running.	
Propeller Storage and Preservation	3
Propeller preservation and de-preservation.	

Instructional Strategy:

While imparting instructions, teacher should give demonstration of various types of piston engines as well as propellers, its systems and components, to the students. Different mock ups, transparencies and animated videos should be shown to the students for better understanding of the lesson.

Recommended Books:

- 1. Airframe and Power Plant Mechanics (EA-AC 65- 12A) -Power Plant Hand FAA
- 2. Bent and McKinley, 'Power Plant'.
- 3. Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft
- 4. Frank Delph, 'Aircraft Propeller and Controls'.
- 5. Power Plant Section Text Book- (EA-ITP-P)
- 6. Herschel Smith, 'Aircraft Piston Engines'.
- 7. Dale Crane, 'Aviation Maintenance Technician Series'.

PISTON ENGINES AND PROPELLERS LAB.

Subject Code: BAEE3-538		Duration: 60 Hrs.
	0042	

S.N.	Contents	Hrs.	
01	Familiarise with constructions and functions of piston engines.	3	
02	Identification and inspection of various subassemblies of piston engines.	3	
03	Identification and inspection of cylinder and piston assemblies.	3	
04	Inspection of accessory gear box valve mechanism.	3	
05	Identification and inspection of various components of piston engines.	3	
06	Identification and inspection of engine fuel system and function of carburettor.	3	
07	Identification and inspection of engine fuel injection system and electronic fuel	3	
	control.		
08	Function check of magneto.	3	
09	Various methods of engine starting and ignition systems and Engine indicating		
	systems.		
10	Identification and inspection of components and function of lubrication system.	3	
11	Engine control system and rigging.	4	
12	Familiarization with engines and airframe interface.	3	
13	Testing of engine fire warning and extinguishing operation.		
14	Preparation for engine/ propeller storage and preservation.		
15	Familiarise with propeller construction.		
16	Methods of propeller pitch control and its effect on engine power.		
	Feathering and reverse pitch control. Propeller synchrophasing system.		
17	Check Propeller track.	3	
18	Engine monitoring and ground operation.	4	

19	Spark plug cleaning and testing.	3

GROUND HANDL	ING, SAFETY AND SU	PPORT SYSTEM
Subject Code: BAEE3-639	LTPC	Duration: 60 Hrs.
-	3104	

Rationale:

A successful Safety Management System (SMS) reduces the rate and cost of accidents and incidents, improves communication and productivity, and helps your airport meet its legal responsibility to manage safety. This subject enables the students to learn how to implement an efficient SMS at your organization and promote a safety culture within your organization. Understand the relevance of risk management in relation to SMS and learn how to evaluate, prioritize and mitigate risk. Analyze the impact human factors have on safety and develop your skills in detecting, controlling and preventing errors in an airport environment.

Learning Outcomes:

On completion of this course students will be able to:

- 1. Implement a safety culture throughout their organization
- 2. Apply the risk management cycle to their organization
- 3. Integrate safety into aerodrome operations by applying management controls to safetycritical processes
- 4. Understand how regulatory requirements, State concerns and State Safety Program (SSP) apply to SMS.

Contents	Hrs.
Dent I	5
	Э
General knowledge of ground handling of Aircraft, Aircraft Safety; Mooring, Jacking,	
Leveling, noisting of aircraft, I owing, Mooring of an a/c during adverse conditions.	
Aircraft cleaning and maintaining.	
Ground signaling/marshalling of aircraft in day & night time.	
Part-II	10
Brief knowledge of airport and its procedures. Control tower, Dispersal areas, Aprons,	
Tarmac, Taxi track, Runway and its ends. Approach and clear zone layout. Brief	
knowledge of the signals given by the control tower.	
Knowledge of Airfield lighting system, Aircraft Rescue & Fire Fighting.	
Part-III	15
Maintenance and handling of ground equipment's used in maintenance of aircraft	10
Compressors Portable hydraulic test stands Electrical power supply equipment charging	
trolley Air conditioning and Heating unit ground support air start unit Pressure oil unit	
Library, All-conditioning and Heating unit, ground support an start unit. Pressure on unit,	
Fire extinguisners, jacks, Hoisting cranes/gantry, Ladders, Platforms, Tresties, and Chocks.	
	10
Part-IV	10
Knowledge of safety and fire precautions to be observed during maintenance including re-	
fueling, defueling & engine start.	
Maintenance of hydraulic accumulators, reservoirs and filters:	

Part-V Rigging of flight control surfaces and duplicate inspection; Rigging checks-Angular	10
alignment checks and symmetry checks, Knowledge and use of Tensiometers, Protractors	
etc.	
Part-VI	10
Maintenance of landing gear (L/G), Shock strut charging and bleeding, Maintenance of L/G	
brakes i.e., Dragging, Grabbing, Fading, Brakes and excessive brake pedal travel.	
Maintenance on wheels, tires and tubes i.e., dismantling, inspection, assembling, inflating,	
inspection and installation Storage of Rotables.	

Instructional Strategy:

Learn how to plan, organize, create and deliver performance-based safety training that truly engages students and improves organization's safety practices.

Recommended Books:

- 1. General handbook AC65-9A
- 2. Airframe Handbook AC 65-15A

GROUND HANDLING, SAFETY AND SUPPORT SYSTEM LAB.Subject Code: BAEE3-640L T P CDuration: 60 Hrs.0 0 4 20 0 4 2Duration: 60 Hrs.

S.N.	Contents	Hrs.
01	Hydraulic system bleeding, replenish fluid reservoir and handling precautions	6
02	Hydraulic accumulator charging	6
03	Use of ground power unit and checks	4
04	4 Identification and control of various types of fires, practicing fire extinguishing.	
05	Practical on headset communication during arrival and departure of aircraft &	4
	Identification of aircraft hazard zones	
06	Fuel sample check and refuelling	6
07	Flight control system lubrication	6
08	Landing gear system lubrication	6
09	Landing gear oleo charging	6
10	Tyre pressure check	4
11	Aircraft parking and mooring	8

APPROVAL OF MAINTENANCE ORGANIZATION		
Subject Code: BAEE3-641	L T P C	Duration: 60 Hrs.
	3104	

Rationale:

This Subject establishes the requirements to be met by an organization to qualify for the issue or continuation of an approval for the maintenance of aircraft and components to be installed therein used by air operators and other civil aircrafts registered or operated in India.

Learning Outcomes:

- 1. After undergoing this subject, the students will be able to:
- 2. Understand DGCA rules to be followed by Maintenance Organizations.
- 3. Know procedure to be followed for Approval of Maintenance Organization.
- 4. Create maintenance work orders, Aircraft Certificate of Release to Service, Component Certificate of Release to Service.

Contents	Hrs.
Scope, Application, Extent Of Approval, Maintenance Organization Manual	5
Maintenance Organization Manual, Personnel Requirements,	5
Certifying staff and airworthiness review staff, Components, Equipment and Tools	7
Maintenance Data, Maintenance Work Orders, Maintenance Standards, Aircraft	7
Certificate of Release to Service, Component Certificate of Release to Service.	
Maintenance Records and airworthiness review record, Privileges of the Organization.	6
Organizational Review, Changes to the Approved Maintenance Organization, Continued	5
Validity of Approval, Findings.	
CAR-145 SECTION A TECHNICAL REQUIREMENTS:	25
ACCEPTABLE MEANS OF COMPLIANCE	
GUIDANCE MATERIAL	

Instructional Strategy

While teaching this subject teacher need to refer latest revision of CAR-M and CAR-145 available on DGCA website www.dgca.nic.in.

Recommended Books:

- 1. CAR-M available on DGCA website www.dgca.nic.in.
- 2. CAR-145 available on DGCA website www.dgca.nic.in.

APPROVAL OF MAINTENANCE ORGANIZATION LAB.			
Subje	ct Code: BAEE3-642 L T P C Duration:	60 H <mark>rs</mark> .	
	0042		
		_	
S.N.	Contents	H <mark>rs</mark> .	
01	Scope, Application, Extent Of Approval, Maintenance Organization Manual		
02	Maintenance Organization Manual, Personnel Requirements,		
03	Certifying staff and airworthiness review staff, Components, Equipment and		
	Tools		
04	4 Maintenance Data, Maintenance Work Orders, Maintenance Standards,		
	Aircraft Certificate of Release to Service, Component Certificate of Release		
	to Service.		
05	5 Maintenance Records and airworthiness review record, Privileges of the		
	Organization.		
06	06 Organizational Review, Changes to the Approved Maintenance Organization,		
	Continued Validity of Approval, Findings.		
07	CAR-145 SECTION A TECHNICAL REQUIREMENTS:		
	ACCEPTABLE MEANS OF COMPLIANCE GUIDANCE MATERIAL		

TYPICAL AIRCRAFT MAI	NTENANCE - FIXED V	VING HEAVY/COMPLEX	
AIRCRAFT			
Subject Code: BAEE3-643	LTPC	Duration: 60 Hrs.	
-	3104		

Rationale:

This Subject has been prepared for a specific fixed wing Heavy/Complex Aircrafts. It contains information necessary to enable the students to service, troubleshoot, functionally test, and repair systems and equipment in the particular aircraft. It also includes information

necessary for the students to perform maintenance or make minor repair to units in the aircraft normally requiring such action on the flight line or in the maintenance hangar. It covers the aircraft configuration as described in the AMM.

Learning Outcomes:

After undergoing this subject, the students will be able to:

- 1. Read the Maintenance Manual, Illustrated Parts Catalogue, Wiring Diagrams and other literature available with the aircraft.
- 2. Understand the various systems fitted to the specific aircraft.
- 3. Troubleshoot the Landing Gear system.
- 4. Carryout towing, Leveling, Weighing and Pre-flight operations.

Contents	Hrs.
Dimensions and Areas, Lifting and Shoring, Levelling and Weighing.	
Towing and Taxiing, Placards and Markings, Servicing.	
Air Conditioning, Auto flight.	
Electrical Power, Equipment and Furnishings.	
Fire Protection, Flight Controls.	
Fuel, Hydraulic Power, Ice and Rain Protection.	
Landing Gear, Lights, Oxygen system, Pneumatic system, Vacuum system, Instruments	
and Panels, Lights.	
Doors, Fuselage, Stabilizer, Windows, Wings,	
Power Plant, Engine Fuel and Control, Ignition, Engine Controls, Engine Indicating, Oil, Starting	

Instructional Strategy:

While teaching this subject teacher need to refer the Aircraft Maintenance Manual and other publications of the fixed wing Heavy/Complex aircraft available with the Institute. To make the subject more interesting artificial snags can be developed in aircraft systems and troubleshooting procedures should be followed for rectification as per the Maintenance Manual.

- 1. Specific "Aircraft Maintenance Manual" for heavy/complex aircraft available with the Institute.
- 2. Specific "Aircraft Flight Manual" for heavy/complex aircraft available with the Institute.

TYPICAL AIRCRAFT MAINTENANCE - FIXED WING HEAVY/COMPLEX		
AIRCRAFT LAB.		
Subject Code: BAEE3-644	LTPC	Duration: 60 Hrs.
	0042	

S.N.	Contents	Hrs.
01	GENERAL VISUAL INSPECTION.	
02	PHASE AI 300 HOUR INSPECTION/CHECKS	
03	PHASE A2 300 HOUR INSPECTIONICHECKS	
04	PHASE A3 300 HOUR INSPECTIONICHECKS	
05	PHASE A4 300 HOUR INSPECTIONICHECKS	
06	PHASE A5 300 HOUR INSPECTIONICHECKS	
07	PHASE A6 300 HOUR INSPECTIONICHECKS	

TYPICAL AIRCRAFT MA	INTENANCE - FIXED WI	NG LIGHT/COMPOSITE
	AIRCRAFT	
Subject Code: BAEE3-645	L T P C	Duration: 60 Hrs.
	3104	

Rationale:

This Subject has been prepared for specific Fixed Wing Light / Composite Aircrafts. It contains information necessary to enable the students to service, troubleshoot, functionally test, and repair systems and equipment in the particular aircraft. It also includes information necessary for the students to perform maintenance or make minor repair to units in the aircraft normally requiring such action on the flight line or in the maintenance hangar. It covers the aircraft configuration as delivered to the customer.

Learning Outcomes:

After undergoing this subject, the students will be able to:

- 1. Read the Maintenance Manual, Illustrated Parts Catalogue, Wiring Diagrams and other literature available with the aircraft.
- 2. Understand the various systems fitted to the specific aircraft.
- 3. Troubleshoot the Landing Gear system.
- 4. Carryout towing, Levelling, Weighing and Pre-flight operations.

S.N.	Contents	Hrs.
01	General Description of Light Aircraft as per AMM	
02	Ground Handling, Servicing, Cleaning, Lubrication and Inspection.	
03	Fuselage, Wing And Empennage, Aileron Control System, Wing Flap Control	
	System, Elevator Control System, Elevator Trim Tab Control System, Rudder	
	Control System, Landing Gear And Brakes.	
04	Engine, Propeller, Fuel System.	
05	Instruments & Instrument Systems.	
06	Electrical System, Lighting And Lightning Protection	
07	Wiring Diagrams.	
08	Avionics.	
09	Inspection Following an Incident, List Of Fuels, Oils, Lubricants, Greases And	
	Their Periodicity Of Usage.	

Instructional Strategy:

While teaching this subject teacher need to refer the Aircraft Maintenance Manual and other publications of the fixed wing Light/Composite aircraft available with the Institute. To make the subject more interesting artificial snags can be developed in systems and troubleshooting procedures should be followed for rectification as per Aircraft Maintenance Manual.

- 1. Specific "Aircraft Maintenance Manual" for Light/composite aircraft available with the Institute.
- 2. Specific "Aircraft Flight Manual" for Light/composite aircraft available with the Institute.

TYPICAL AIRCRAFT MAI	INTENANCE - FIXED V	VING LIGHT/COMPOSITE
AIRCRAFT LAB.		
Subject Code: BAFF3-646	ΙΤΡΟ	Duration · 60 Hrs

Subject Code: BAEE3-646

LIPC 0042

uration: 60 Hrs.

S.N.	Contents	Hrs.
01	General Description of Light Aircraft as per AMM	
02	Ground Handling, Servicing, Cleaning, Lubrication and Inspection.	
03	Fuselage, Wing And Empennage, Aileron Control System, Wing Flap Control	
	System, Elevator Control System, Elevator Trim Tab Control System, Rudder	
	Control System, Landing Gear And Brakes.	
04	Engine, Propeller, Fuel System.	
05	Instruments & Instrument Systems.	
06	Electrical System, Lighting And Lightning Protection	
07	Wiring Diagrams.	
08	Avionics.	
09	Inspection Following an Incident, List Of Fuels, Oils, Lubricants, Greases and	
	their Periodicity of Usage.	

MRSPTU